Advertisements
Advertisements
Question
`int (2x + 1)/((x + 1) ( x - 2))` dx
Solution
Let I = `int (2x + 1)/((x + 1) ( x - 2))` dx
Using partial fraction
`(2x + 1)/((x + 1) (x -2)) = A/(x + 1) + B/(x - 2)`........(α)
2x + 1 = A (x - 2) + B( x + 1)
Put x = 2 in equation (i),
4 + 1 = B ( 2 + 1)
B = `5/3`
Put x = -1 in equation (i)
-2 + 1 = A[-1 -2]
A = `(-1)/(-3)`
A = `1/3`
Substituting the values of A and B in equation (α) we get
`(2x + 1)/((x + 1) (x -1)) = (1/3)/(x + 1) + (5/3)/(x -2)`
I = `int [(1/3)/(x +1) + (5/3)/( x -2)]`
I = `1/3 int 1/(x +1) dx + 5/3 int 1/(x -2) dx`
I = `1/3 log |x + 1| + 5/3 log |x -2| + c`
APPEARS IN
RELATED QUESTIONS
evaluate : `int xcosxdx`
Evaluate :`int_0^(pi/2)dx/(1+cotx)`
Evaluate : `int (2"x" + 1)/(("x" + 1)("x"-2)) "dx"`
If the function f is continuous at x = 2 and x = 4 then find the values of a and b.
Where f(x) = x2 + ax + b, x < 2
= 3x + 2, 2 ≤ x ≤ 4
= 2ax + 5b, 4 < x
Evaluate ; `int x^2/(x^6 - 4x^3 + 13)` dx
Evaluate : `int x cosx dx`
Evaluate : `∫((1 + logx))/(x(2 + logx)(3 + logx)`dx