Advertisements
Advertisements
Question
Evaluate the following limits: `lim_(z -> 2) [(z^2 - 5z + 6)/(z^2 - 4)]`
Solution
`lim_(z -> 2) (z^2 - 5z + 6)/(z^2 - 4)`
= `lim_(z -> 2) ((z - 3)(z - 2))/((z + 2)(z - 2)`
= `lim_(z -> 2) (z - 3)/(z - 2) ...[("As" z -> 2"," z ≠ 2),(therefore z - 2 ≠ 0)]`
= `(2 - 3)/(2 + 2)`
= `-1/4`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limits: `lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`
Evaluate the following limits: `lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`
Evaluate the following limits: `lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`
Evaluate the following limit:
`lim_(x -> - 2)[(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following limits: `lim_(y -> 1/2)[(1 - 8y^3)/(y - 4y^3)]`
Evaluate the following Limits: `lim_(x -> 2)[((x - 2))/(2x^2 - 7x + 6)]`
Evaluate the following Limits: `lim_(x -> 4)[(3 - sqrt(5 + x))/(1 - sqrt(5 - x))]`
Evaluate the following limit:
`lim_(z -> 2) [(z^2 - 5z + 6)/(z^2 - 4)]`
Evaluate the following limit :
`lim_(x -> -3)[(x + 3)/(x^2 + 4x + 3)]`
Evaluate the following limit :
`lim_(x -> -2) [(-2x - 4)/(x^3 + 2x^2)]`
Evaluate the following limit :
`lim_(Deltax -> 0) [((x + Deltax)^2 - 2(x + Deltax) + 1 - (x^2 - 2x + 1))/(Deltax)]`
Evaluate the following limit :
`lim_(x -> 1) [(x - 2)/(x^2 - x) - 1/(x^3 - 3x^2 + 2x)]`
Evaluate the following limit :
`lim_(x -> 1) [(x + 2)/(x^2 - 5x + 4) + (x - 4)/(3(x^2 - 3x + 2))]`
Select the correct answer from the given alternatives.
`lim_(x -> 5) ((sqrt(x + 4) - 3)/(sqrt(3x - 11) - 2))` =
Evaluate the following limit :
`lim_("x" -> -2) [("x"^7 + "x"^5 + 160)/("x"^3 +8)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following Limit:
`lim_(x->1)[(x^3-1)/(x^2 + 5x - 6)]`
Evaluate the following Limit:
`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`