Advertisements
Advertisements
Question
Expand: `("a"+1/(2"a"))^2`
Sum
Solution
(x+y)2 = x2 + 2xy + y2
Here, x = a and y = `1/(2a)`.
Apply the formula
`(a+1/(2a))^2 = a^2 + 2 (a. 1/(2a))+(1/(2a))^2`
Simplify each term
- a2 = a2
- `2(a . 1/(2a)) = 2 . 1/2 = 1`
- `(1/(2a))^2 = 1^2/(2a)^2 = 1/(4a)^2`
Combine the terms
`a^2 + 1 + 1/(4a)^2`
shaalaa.com
Important Formula of Expansion
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Expand : (a+b−c)2
Expand : (a−b+c)2
Expand : `(3"x"+1/(3"x"))^2`
Find the square of `3"x"+2/"y"`
Find the square of `"5a"/"6b"-"6b"/"5a"`
Find the square of `2"m"^2-2/3"n"^2`
Find the square of `5"x"+1/(5"x")`
If `"m" -1/"m"=5`, find : `"m"^2+1/"m"^2`
If a2 + b2 = 41 and ab = 4, find : a + b
If `2"a"+1/(2"a")=8`, find : `4"a"^2+1/(4"a"^2)`