English

Explain Why Water with Detergent Dissolved in It Should Have Small Angles of Contact. - Physics

Advertisements
Advertisements

Question

Explain why Water with detergent dissolved in it should have small angles of contact.

Solution 1

We know that the clothes have narrow pores or spaces which act as capillaries. Also, we know that the rise of liquid in a capillary tube is directly proportional to cosθ (Here θ is the angle of contact). As θ is small for detergent, therefore cos θ will be large. Due to this, the detergent will penetrate more in the narrow pores of the clothes.

shaalaa.com

Solution 2

Water with detergent dissolved in it has small angles of contact (θ). This is because for a small θ, there is a fast capillary rise of the detergent in the cloth. The capillary rise of a liquid is directly proportional to the cosine of the angle of contact (θ). If θ is small, then cosθ will be large and the rise of the detergent water in the cloth will be fast.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Mechanical Properties of Fluids - Exercises [Page 268]

APPEARS IN

NCERT Physics [English] Class 11
Chapter 10 Mechanical Properties of Fluids
Exercises | Q 2.4 | Page 268

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Figure  (a) shows a thin liquid film supporting a small weight = 4.5 × 10–2 N. What is the weight supported by a film of the same liquid at the same temperature in Fig. (b) and (c)? Explain your answer physically.


Mercury has an angle of contact equal to 140° with soda lime glass. A narrow tube of radius 1.00 mm made of this glass is dipped in a trough containing mercury. By what amount does the mercury dip down in the tube relative to the liquid surface outside? Surface tension of mercury at the temperature of the experiment is 0.465 N m–1. Density of mercury = 13.6 × 103 kg m–3


If more air is pushed in a soap bubble, the pressure in it


Consider a small surface area of 1 mm2 at the top of a mercury drop of radius 4.0 mm. Find the force exerted on this area (a) by the air above it (b) by the mercury below it and (c) by the mercury surface in contact with it. Atmospheric pressure = 1.0 × 105 Pa and surface tension of mercury = 0.465 N m−1.  Neglect the effect of gravity. Assume all numbers to be exact.


The lower end of a capillary tube is immersed in mercury. The level of mercury in the tube is found to be 2 cm below the outer level. If the same tube is immersed in water, up to what height will the water rise in the capillary?


The water droplets are spherical in free fall due to ______ 


Mention the S.I unit and dimension of surface tension.


Water rises in a capillary tube of radius r upto a height h. The mass of water in a capillary is m. The mass of water that will rise in a capillary of radius `"r"/4` will be ______.


Find the work done when a drop of mercury of radius 2 mm breaks into 8 equal droplets. [Surface tension of mercury = 0.4855 J/m2].


A drop of water of radius 8 mm breaks into number of droplets each of radius 1 mm. How many droplets will be formed?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×