English

F(x) = x+3-2x3-1 for x ≠ 1 = 2 for x = 1, at x = 1. - Mathematics and Statistics

Advertisements
Advertisements

Question

f(x) = `(sqrt(x + 3) - 2)/(x^3 - 1)`  for x ≠ 1

= 2    for x = 1, at x = 1.

Sum

Solution

f(1) = 2  …[given]

`lim_(x→1) "f"(x) = lim_(x→1) (sqrt(x + 3) - 2)/(x^3 - 1)`

= `lim_(x→1) ((sqrt(x + 3) - 2)/(x^3 - 1) xx (sqrt(x + 3) + 2)/(sqrt(x + 3) + 2))`

= `lim_(x→1) ((x + 3 - 4)/((x^3 - 1)(sqrt(x + 3) + 2)))`

= `lim_(x→1) (x - 1)/((x - 1)(x^2 + x + 1)(sqrt(x + 3) + 2))`

= `lim_(x→1) 1/((x^2 + x + 1)(sqrt(x + 3) + 2)) ...[("As"  x→1","  x ≠ 1),(therefore x - 1 ≠ 0)]`

= `1/(lim_(x→1)(x^2 + x + 1) xx lim_{x→1} (sqrt(x + 3) + 2))`

= `1/((1^2 + 1 + 1) xx (sqrt(1 + 3) + 2))`

= `1/(3(2 + 2))`

= `1/12`

∴ `lim_(x→1) "f"(x) ≠ "f"(1)`

∴ f is discontinuous at x = 1

shaalaa.com
Continuity in the Domain of the Function
  Is there an error in this question or solution?
Chapter 8: Continuity - Miscellaneous Exercise 8 [Page 113]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
Chapter 8 Continuity
Miscellaneous Exercise 8 | Q I. (4) | Page 113

RELATED QUESTIONS

Examine the continuity of f(x) = x3 + 2x2 − x − 2 at x = –2.


Examine the continuity of f(x) = `(x^2 - 9)/(x - 3)` on R.


If `f(x) = (24^x - 8^x - 3^x + 1)/(12^x - 4^x - 3^x + 1)` for x ≠ 0

            = k,                               for x = 0
is continuous at x = 0, find k.


Discuss the continuity of the following function at the point(s) or in the interval indicated against them.

`f(x) = (3^x + 3^-x - 2)/x^2`  for x ≠ 0.

= (log3)2                         for x = 0 at x = 0


If `f(x) = (5^x + 5^-x - 2)/(x^2)`  for x ≠ 0

          = k                            for x = 0
is continuous at x = 0, find k


For what values of a and b is the function

f(x) = ax + 2b + 18    for x ≤ 0

= x2 + 3a − b            for 0 < x ≤ 2

= 8x – 2                     for x > 2,

continuous for every x ?


For what values of a and b is the function

`f(x) = (x^2 - 4)/(x - 2)`      for x < 2

= ax2 − bx + 3         for 2 ≤ x < 3
= 2x – a + b             for x ≥ 3
continuous in its domain.


Find a and b if the following function is continuous at the point indicated against them.

`f(x) = x^2 + a`    , for x ≥ 0

= `2sqrt(x^2 + 1) + b` , for x < 0 and
f(1) = 2 is continuous at x = 0


The domain of the function cos-1 (log2(x2 + 5x + 8)) is


Domain of the function f(x) = `sqrt(1 + 4x - x^2)` is ______


Domain of the function f(x) = sin-1 (1 + 3x + 2x2) is ______.


If the function f(x) = `(2x - sin^-1x)/(2x + tan^-1x)`, (x ≠ 0) is continuous at each point of its domain, then the value of f(0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×