English

If f(x)=24x-8x-3x+112x-4x-3x+1 for x ≠ 0 = k, for x = 0 is continuous at x = 0, find k. - Mathematics and Statistics

Advertisements
Advertisements

Question

If `f(x) = (24^x - 8^x - 3^x + 1)/(12^x - 4^x - 3^x + 1)` for x ≠ 0

            = k,                               for x = 0
is continuous at x = 0, find k.

Sum

Solution

Function f is continuous at x = 0

∴ f(0) = `lim_(x→0) "f"(x)`

∴ k = `lim_(x→0) (24^x - 8^x - 3^x + 1)/(12^x - 4^x - 3^x + 1)`

= `lim_(x→0) (8^x*3^x - 8^x - 3^x + 1)/(4^x*3^x - 4^x - 3^x + 1)`

= `lim_(x→0) (8^x(3^x - 1) -1(3^x - 1))/(4^x(3^x - 1) - 1(3^x - 1))`

= `lim_(x→0) ((3^x - 1)(8^x - 1))/((3^x - 1)(4^x - 1))`

= `lim_(x→0) (8^x - 1)/(4^x - 1)          ...[(because x→0","   3^x → 3^0),(therefore 3^x → 1 therefore 3^x ≠ 1),(therefore 3^x - 1 ≠ 0)]`

= `lim_(x→0) (((8^x - 1)/x)/((4^x - 1)/x))`   ...[∵ x → 0, ∴ x ≠ 0]

= `log 8/log 4              ...[because  lim_(x→0) (("a"^x - 1)/x) = log"a"]`

= `log(2)^3/log(2)^2`

= `(3log2)/(2log2)`

∴ f(0) = `3/2`

shaalaa.com
Continuity in the Domain of the Function
  Is there an error in this question or solution?
Chapter 8: Continuity - Exercise 8.1 [Page 112]

APPEARS IN

RELATED QUESTIONS

Examine the continuity of f(x) = x3 + 2x2 − x − 2 at x = –2.


Examine the continuity of f(x) = `(x^2 - 9)/(x - 3)` on R.


Discuss the continuity of the following function at the point(s) or in the interval indicated against them.

`f(x) = (3^x + 3^-x - 2)/x^2`  for x ≠ 0.

= (log3)2                         for x = 0 at x = 0


If `f(x) = (5^x + 5^-x - 2)/(x^2)`  for x ≠ 0

          = k                            for x = 0
is continuous at x = 0, find k


For what values of a and b is the function

f(x) = ax + 2b + 18    for x ≤ 0

= x2 + 3a − b            for 0 < x ≤ 2

= 8x – 2                     for x > 2,

continuous for every x ?


For what values of a and b is the function

`f(x) = (x^2 - 4)/(x - 2)`      for x < 2

= ax2 − bx + 3         for 2 ≤ x < 3
= 2x – a + b             for x ≥ 3
continuous in its domain.


f(x) = `(sqrt(x + 3) - 2)/(x^3 - 1)`  for x ≠ 1

= 2    for x = 1, at x = 1.


Find a and b if the following function is continuous at the point indicated against them.

`f(x) = x^2 + a`    , for x ≥ 0

= `2sqrt(x^2 + 1) + b` , for x < 0 and
f(1) = 2 is continuous at x = 0


The domain of the function cos-1 (log2(x2 + 5x + 8)) is


Domain of the function f(x) = `sqrt(1 + 4x - x^2)` is ______


Domain of the function f(x) = sin-1 (1 + 3x + 2x2) is ______.


If the function f(x) = `(2x - sin^-1x)/(2x + tan^-1x)`, (x ≠ 0) is continuous at each point of its domain, then the value of f(0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×