Advertisements
Advertisements
Question
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
Solution
6xy(a2 + b2) + 8yz(a2 + b2) − 10xz(a2 + b2)
Since (a2 + b2) is common in all three terms, factor it out:
(6xy + 8yz − 10xz)(a2 + b2)
Now the expression is:
(6xy + 8yz − 10xz)(a2 + b2)
Factorize the trinomial 6xy + 8yz − 10xz
6xy + 8yz − 10xz = 2y(3x + 4z) − 2z(5x).
y(3x + 4z) − 2z(5x) = 2(3x + 4z)(y − z).
The fully factorized form of the original expression is:
2(3x + 4z)(y − z)(a2 + b2)
APPEARS IN
RELATED QUESTIONS
Find the common factors of the terms.
12x, 36
Find the common factors of the terms.
2x, 3x2, 4
Find the common factors of the terms.
6 abc, 24ab2, 12a2b
Factorise.
15pq + 15 + 9q + 25p
Factorize the following:
3x − 9
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factorize the following:
x4y2 − x2y4 − x4y4
Factorize the following:
16m − 4m2
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Factorise : a3 - a2 +a
Factorise : 17a6b8 - 34a4b6 + 51a2b4
Factorise : 3x5y - 27x4y2 + 12x3y3
Factorise : x2(a-b)-y2 (a-b)+z2(a-b)
Factorise : 2b (2a + b) - 3c (2a + b)
Factorise : (a+ 2b) (3a + b) - (a+ b) (a+ 2b) +(a+ 2b)2
Factorise: 36x2y2 - 30x3y3 + 48x3y2
factorise : 8(2a + 3b)3 - 12(2a + 3b)2
Factorise xy2 - xz2, Hence, find the value of :
40 x 5.52 - 40 x 4.52
Factorise the following by taking out the common factors:
36(x + y)3 - 54(x + y)2