Advertisements
Advertisements
प्रश्न
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
उत्तर
6xy(a2 + b2) + 8yz(a2 + b2) − 10xz(a2 + b2)
Since (a2 + b2) is common in all three terms, factor it out:
(6xy + 8yz − 10xz)(a2 + b2)
Now the expression is:
(6xy + 8yz − 10xz)(a2 + b2)
Factorize the trinomial 6xy + 8yz − 10xz
6xy + 8yz − 10xz = 2y(3x + 4z) − 2z(5x).
y(3x + 4z) − 2z(5x) = 2(3x + 4z)(y − z).
The fully factorized form of the original expression is:
2(3x + 4z)(y − z)(a2 + b2)
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
12x, 36
Find the common factors of the terms.
3x2y3, 10x3y2, 6x2y2z
Factorise the following expression:
20 l2m + 30 alm
Factorise the following expression:
5x2y − 15xy2
Factorise.
x2 + xy + 8x + 8y
Factorise.
z − 7 + 7xy − xyz
Factorize the following:
16m − 4m2
Factories by taking out common factors :
ab(a2 + b2 - c2) - bc(c2 - a2 - b2) + ca(a2 + b2 - c2)
Factorise : `x^2 + [a^2 + 1]/a x + 1`
Factorise:
`x^4 + y^4 - 27x^2y^2`
Factorise : 9x 2 + 3x - 8y - 64y2
Factorise : a3 - a2 +a
Factorise : a3b - a2b2 - b3
factorise:
9a (x − 2y)4 − 12a (x − 2y)3
Factorise: a2 - 0·36 b2
Factorise: x4 - 5x2 - 36
Factorise the following by taking out the common factors:
5a(x2 - y2) + 35b(x2 - y2)
Factorise:
x4 + y4 - 6x2y2
Factorise:
`"p"^2 + (1)/"p"^2 - 3`