Advertisements
Advertisements
प्रश्न
Factorise the following by taking out the common factors:
5a(x2 - y2) + 35b(x2 - y2)
उत्तर
5a(x2 - y2) + 35b(x2 - y2)
Here, the common factor is 5(x2 - y2).
Dividing throughout by 5(x2 - y2). we get
`(5"a"(x^2 - y^2))/(5(x^2 - y^2)) + (35"b"(x^2 - y^2))/(5(x^2 - y^2)`
= a + 7b
∴ 5a(x2 - y2) + 35b(x2 - y2)
= 5(x2 - y2)(a + 7b).
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
2x, 3x2, 4
Factorise the following expression:
5x2y − 15xy2
Factorise the following expression:
10a2 − 15b2 + 20c2
Factorise the following expression:
− 4a2 + 4ab − 4 ca
Factorise.
15xy − 6x + 5y − 2
Factorise.
15pq + 15 + 9q + 25p
Factorise.
z − 7 + 7xy − xyz
Factorize the following:
20x3 − 40x2 + 80x
Factorize the following:
x4y2 − x2y4 − x4y4
Factorize the following:
16m − 4m2
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Factorise : `(9a)^2 + 1/(9a)^2 - 2 - 12a + 4/(3a)`
Factorise:
`x^4 + y^4 - 27x^2y^2`
Factorise : 4(2x - 3y)2 - 8x+12y - 3
Factorise : 3 - 5x + 5y - 12(x - y)2
Find the value of : `[(18.5)^2 - (6.5)^2]/[18.5 + 6.5]`
Factorise : a3 - a2 +a
Factorise : 3x2 + 6x3
Factorise : 4a2 - 8ab
Factorise : 2x3b2 - 4x5b4
Factorise : (x + y)(a + b) + (x - y)(a + b)
Factorise : 4x(3x - 2y) - 2y(3x - 2y)
Factorise xy2 - xz2, Hence, find the value of :
40 x 5.52 - 40 x 4.52
Factorise the following by taking out the common factors:
(a - b)2 -2(a - b)
Factorise:
`"p"^2 + (1)/"p"^2 - 3`