Advertisements
Advertisements
प्रश्न
Factorise:
`x^4 + y^4 - 27x^2y^2`
उत्तर
`x^4 + y^4 - 27x^2y^2`
= `(x^2)^2 + (y^2)^2 - 2x^2y^2 - 25x^2y^2`
= `(x^2 - y^2)^2 - 25x^2y^2`
= `( x^2 - y^2 )^2 - (5xy)^2` ...[∵ a2 - b2 = (a + b)(a - b)]
= `[ (x^2 - y^2 ) + 5xy ][( x^2 - y^2 ) - 5xy]`
= `[ x^2 + 5xy - y^2 ][ x^2 - 5xy - y^2 ]`
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
12x, 36
Factorise the following expression:
7a2 + 14a
Factorise the following expression:
−16z + 20z3
Factorise.
x2 + xy + 8x + 8y
Factorise.
15xy − 6x + 5y − 2
Factorise.
ax + bx − ay − by
Factorise.
15pq + 15 + 9q + 25p
Factorize the following:
20a12b2 − 15a8b4
Factorize the following:
10m3n2 + 15m4n − 20m2n3
Factorize the following:
a4b − 3a2b2 − 6ab3
Factorize the following:
9x2y + 3axy
Factorise : `x^2 + 1/x^2 - 3`
Factorise : a - b - 4a2 + 4b2
Factorise : 12(3x - 2y)2 - 3x + 2y - 1
Factorise : 3 - 5x + 5y - 12(x - y)2
Find the value of : `[(6.7)^2 - (3.3)^2]/[6.7 - 3.3]`
Factorise : a3 - a2 +a
Factorise : 3x2 + 6x3
Factorise : 4a2 - 8ab
factorise : a2 - ab - 3a + 3b
factorise : xy2 + (x - 1) y - 1
Factorise: a4 - 625
Factorise the following by taking out the common factors:
(a - b)2 -2(a - b)
Factorise the following by taking out the common factors:
36(x + y)3 - 54(x + y)2
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Factorise:
`"p"^2 + (1)/"p"^2 - 3`
Factorise the following by taking out the common factor
9x5y3 + 6x3y2 – 18x2y