Advertisements
Advertisements
प्रश्न
Factorise : `x^2 + 1/x^2 - 3`
उत्तर
`x^2 + 1/x^2 - 3 `
= `x^2 + 1/x^2 - 2 xx x xx 1/x - 1`
= `( x - 1/x )^2 - 1`
= `( x - 1/x )^2 - (1)^2`
= `( x - 1/x - 1 )( x - 1/x + 1 )` [ ∵ a2 - b2 = ( a + b )( a - b )]
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
2x, 3x2, 4
Find the common factors of the terms.
16x3, −4x2, 32x
Find the common factors of the terms.
10pq, 20qr, 30rp
Factorise the following expression:
10a2 − 15b2 + 20c2
Factorise.
15pq + 15 + 9q + 25p
Factorize the following:
5x − 15x2
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factorize the following:
x4y2 − x2y4 − x4y4
Factorize the following:
−4a2 + 4ab − 4ca
Factorize the following:
ax2y + bxy2 + cxyz
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Factorise : 4x4 + 9y4 + 11x2y2
Find the value of : ( 987 )2 - (13)2
Factorise : 2x3b2 - 4x5b4
Factorise : 15x4y3 - 20x3y
Factorise : 17a6b8 - 34a4b6 + 51a2b4
Factorise : x2(a-b)-y2 (a-b)+z2(a-b)
Factorise : (a+ 2b) (3a + b) - (a+ b) (a+ 2b) +(a+ 2b)2
factorise : 6x3 - 8x2
Factorise : a2 - ab(1 - b) - b3
factorise : m - 1 - (m-1)2 + am - a
Factorise the following by taking out the common factors:
(mx + ny)2 + (nx - my)2
Factorise the following by taking out the common factors:
p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)
Factorise:
x4 + y4 - 6x2y2
Factorise:
5x2 - y2 - 4xy + 3x - 3y
Factorise the following by taking out the common factor
18xy – 12yz