Advertisements
Advertisements
प्रश्न
Factorise:
x4 + y4 - 6x2y2
उत्तर
x4 + y4 - 6x2y2
= (x2)2 + (y)2 - 2x2y2 - 4x2y2
= [(x2)2 + (y)2 - 2x2y2] - (4x2y2)
= (x2 - y2)2 - (2xy)2
= (x2 - y2 - 2xy)(x2 - y2 + 2xy).
APPEARS IN
संबंधित प्रश्न
Factorise the following expression:
−16z + 20z3
Factorise.
15pq + 15 + 9q + 25p
Factorize the following:
20x3 − 40x2 + 80x
Factorize the following:
28a2 + 14a2b2 − 21a4
Factorize the following:
x4y2 − x2y4 − x4y4
Factorize the following:
9x2y + 3axy
Factories by taking out common factors :
ab(a2 + b2 - c2) - bc(c2 - a2 - b2) + ca(a2 + b2 - c2)
Factorise:
(2a - 3)2 - 2 (2a - 3) (a - 1) + (a - 1)2
Factorise:
5a2 - b2 - 4ab + 7a - 7b
Factorise : 12(3x - 2y)2 - 3x + 2y - 1
Find the value of : ( 67.8 )2 - ( 32.2 )2
Find the value of : `[(18.5)^2 - (6.5)^2]/[18.5 + 6.5]`
Factorise : 15x + 5
Factorise : 15x4y3 - 20x3y
Factorise : (x + y)(a + b) + (x - y)(a + b)
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
factorise : 35a3b2c + 42ab2c2
factorise : a2 - ab - 3a + 3b
factorise : x2y - xy2 + 5x - 5y
Factorise the following by taking out the common factors:
5a(x2 - y2) + 35b(x2 - y2)
Factorise the following by taking out the common factors:
2x5y + 8x3y2 - 12x2y3
Factorise:
`"p"^2 + (1)/"p"^2 - 3`
Factorise:
5x2 - y2 - 4xy + 3x - 3y
Factorise the following by taking out the common factor
9x5y3 + 6x3y2 – 18x2y