Advertisements
Advertisements
प्रश्न
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
उत्तर
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
= `(4"a"^2 + 1/(4"a"^2) - 2) - (6"a" - 3/(2"a"))`
= `(2"a" - 1/(2"a"))^2 - 3(2"a" - 1/(2"a"))`
= `(2"a" - 1/(2"a")) (2"a" - 1/(2"a") - 3)`
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
2y, 22xy
Find the common factors of the terms.
3x2y3, 10x3y2, 6x2y2z
Factorise the following expression:
7x − 42
Factorise the following expression:
7a2 + 14a
Factorise the following expression:
ax2y + bxy2 + cxyz
Factorize the following:
5x − 15x2
Factorize the following:
72x6y7 − 96x7y6
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factories by taking out common factors :
2x(a - b) + 3y(5a - 5b) + 4z(2b - 2a)
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Factorise : `(9a)^2 + 1/(9a)^2 - 2 - 12a + 4/(3a)`
Factorise : `x^2 + 1/x^2 - 3`
Factorise : (a2 - 3a) (a2 - 3a + 7) + 10
Factorise : 12(3x - 2y)2 - 3x + 2y - 1
Factorise : 2√3x2 + x - 5√3
Factorise : 3x2 + 6x3
Factorise : 17a6b8 - 34a4b6 + 51a2b4
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
factorise : xy2 + (x - 1) y - 1
factorise : ab(x2 + y2) - xy (a2 + b2)
Factorise xy2 - xz2, Hence, find the value of :
9 x 82 - 9 x 22
Factorise xy2 - xz2, Hence, find the value of :
40 x 5.52 - 40 x 4.52
Factorise the following by taking out the common factors:
2a(p2 + q2) + 4b(p2 + q2)
Factorise the following by taking out the common factors:
(mx + ny)2 + (nx - my)2
Factorise the following by taking out the common factors:
36(x + y)3 - 54(x + y)2
Factorise:
`y^2 + (1)/(4y^2) + 1 - 6y - (3)/y`
Factorise the following by taking out the common factor
9x5y3 + 6x3y2 – 18x2y