Advertisements
Advertisements
Question
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Solution
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
= `(4"a"^2 + 1/(4"a"^2) - 2) - (6"a" - 3/(2"a"))`
= `(2"a" - 1/(2"a"))^2 - 3(2"a" - 1/(2"a"))`
= `(2"a" - 1/(2"a")) (2"a" - 1/(2"a") - 3)`
APPEARS IN
RELATED QUESTIONS
Factorise the following expression:
6p − 12q
Factorise the following expression:
− 4a2 + 4ab − 4 ca
Factorize the following:
5x − 15x2
Factorize the following:
20x3 − 40x2 + 80x
Factorize the following:
a4b − 3a2b2 − 6ab3
Factorize the following:
−4a2 + 4ab − 4ca
Factorise by taking out the common factors :
2 (2x - 5y) (3x + 4y) - 6 (2x - 5y) (x - y)
Factories by taking out common factors :
2x(a - b) + 3y(5a - 5b) + 4z(2b - 2a)
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Factorise : `x^2 + [a^2 + 1]/a x + 1`
Factorise : 4x4 + 9y4 + 11x2y2
Factorise : (a2 - 3a) (a2 - 3a + 7) + 10
Factorise : (a2 - a) (4a2 - 4a - 5) - 6
Factorise : 3 - 5x + 5y - 12(x - y)2
Factorise : `1/4 ( a + b )^2 - 9/16 ( 2a - b )^2`
Factorise : 15x4y3 - 20x3y
Factorise : (x + y)(a + b) + (x - y)(a + b)
Factorise : 2b (2a + b) - 3c (2a + b)
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
Factorise: 36x2y2 - 30x3y3 + 48x3y2
factorise : x2y - xy2 + 5x - 5y
factorise : (ax + by)2 + (bx - ay)2
Factorise the following by taking out the common factors:
4x2y3 - 6x3y2 - 12xy2
Factorise the following by taking out the common factors:
5a(x2 - y2) + 35b(x2 - y2)
Factorise the following by taking out the common factors:
24m4n6 + 56m6n4 - 72m2n2
Factorise:
x4 + y4 - 6x2y2
Factorise:
`"p"^2 + (1)/"p"^2 - 3`
Factorise:
5x2 - y2 - 4xy + 3x - 3y