Advertisements
Advertisements
Question
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Solution
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
= `(x)^2 + 1/(2x)^2 + 2 xx x xx 1/(2x) - 7( x + 1/(2x))`
= `( x + 1/(2x))^2 - 7( x + 1/(2x))`
= `( x + 1/(2x))( x + 1/(2x) - 7)`
= `( x + 1/(2x))( x - 7 + 1/(2x))`
APPEARS IN
RELATED QUESTIONS
Factorise the following expression:
10a2 − 15b2 + 20c2
Factorise.
z − 7 + 7xy − xyz
Factorize the following:
2x3y2 − 4x2y3 + 8xy4
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factorize the following:
−4a2 + 4ab − 4ca
Factorize the following:
x2yz + xy2z + xyz2
Factorise : `x^2 + 1/x^2 - 3`
Factorise:
(2a - 3)2 - 2 (2a - 3) (a - 1) + (a - 1)2
Factorise:
5a2 - b2 - 4ab + 7a - 7b
Factorise : 9x 2 + 3x - 8y - 64y2
Find the value of : `[(6.7)^2 - (3.3)^2]/[6.7 - 3.3]`
Factorise : 15x4y3 - 20x3y
Factorise : 17a6b8 - 34a4b6 + 51a2b4
Factorise : 3x5y - 27x4y2 + 12x3y3
Factorise : 12abc - 6a2b2c2 + 3a3b3c3
Factorise : 4x(3x - 2y) - 2y(3x - 2y)
factorise : 6x3 - 8x2
factorise : m - 1 - (m-1)2 + am - a
Factorise xy2 - xz2, Hence, find the value of :
9 x 82 - 9 x 22
Factorise the following by taking out the common factors:
24m4n6 + 56m6n4 - 72m2n2
Factorise the following by taking out the common factors:
(a - b)2 -2(a - b)
Factorise the following by taking out the common factors:
(mx + ny)2 + (nx - my)2
Factorise:
`y^2 + (1)/(4y^2) + 1 - 6y - (3)/y`
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Factorise:
`"p"^2 + (1)/"p"^2 - 3`
Factorise:
5x2 - y2 - 4xy + 3x - 3y