Advertisements
Advertisements
Question
Factorise : `(9a)^2 + 1/(9a)^2 - 2 - 12a + 4/(3a)`
Solution
`(9a)^2 + 1/(9a)^2 - 2 - 12a + 4/(3a)`
= `(3a)^2 + 1/(3a)^2 - 2 xx 3a xx 1/(3a) - 4( 3a - 1/(3a))`
= `( 3a - 1/(3a))^2 - 4( 3a - 1/(3a))`
= `(3a - 1/(3a))[( 3a - 1/(3a)) - 4]`
= `( 3a - 1/(3a))( 3a - 4 - 1/(3a))`
APPEARS IN
RELATED QUESTIONS
Find the common factors of the terms.
6 abc, 24ab2, 12a2b
Find the common factors of the terms.
16x3, −4x2, 32x
Factorise.
x2 + xy + 8x + 8y
Factorise.
ax + bx − ay − by
Factorize the following:
72x6y7 − 96x7y6
Factorize the following:
20x3 − 40x2 + 80x
Factorize the following:
28a2 + 14a2b2 − 21a4
Factorize the following:
a4b − 3a2b2 − 6ab3
Factorize the following:
9x2y + 3axy
Factorise : x4 + y4 - 3x2y2
Factorise : 4(2x - 3y)2 - 8x+12y - 3
Find the value of : ( 987 )2 - (13)2
Factorise : 2x3b2 - 4x5b4
Factorise : a3b - a2b2 - b3
Factorise : 4x(3x - 2y) - 2y(3x - 2y)
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
factorise : 6x3 - 8x2
factorise:
9a (x − 2y)4 − 12a (x − 2y)3
factorise : x2y - xy2 + 5x - 5y
Factorise : a2 - ab(1 - b) - b3
factorise : (ax + by)2 + (bx - ay)2
Factorise xy2 - xz2, Hence, find the value of :
40 x 5.52 - 40 x 4.52
Factorise: a2 - 0·36 b2
Factorise the following by taking out the common factors:
4x2y3 - 6x3y2 - 12xy2
Factorise the following by taking out the common factors:
2x5y + 8x3y2 - 12x2y3