Advertisements
Advertisements
Question
factorise:
9a (x − 2y)4 − 12a (x − 2y)3
Solution
9a (x − 2y)4 − 12a (x − 2y)3
The common factors between the terms are:
- a,
- (x − 2y)3, (the lower power of (x−2y),
- And the coefficients 9 and 12 have a common factor of 3.
Factor out 3a(x − 2y)3:
9a(x − 2y)4 − 12a(x − 2y)3 = 3a(x − 2y)3 (3(x − 2y) −4)
Simplify 3(x − 2y) −4:
3(x − 2y) −4 = 3x − 6y − 4
Thus, the expression becomes:
3a(x − 2y)3 (3x − 6y − 4)
APPEARS IN
RELATED QUESTIONS
Find the common factors of the terms.
2y, 22xy
Factorise.
15pq + 15 + 9q + 25p
Factorize the following:
3x − 9
Factorize the following:
10m3n2 + 15m4n − 20m2n3
Factorize the following:
ax2y + bxy2 + cxyz
Factorise by taking out the common factors :
2 (2x - 5y) (3x + 4y) - 6 (2x - 5y) (x - y)
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Factorise : a - b - 4a2 + 4b2
Factorise : x4 + y4 - 3x2y2
Factorise : 12(3x - 2y)2 - 3x + 2y - 1
Factorise : `1/4 ( a + b )^2 - 9/16 ( 2a - b )^2`
Factorise : 2(ab + cd) - a2 - b2 + c2 + d2
Factorise : a3 - a2 +a
Factorise : 3x5y - 27x4y2 + 12x3y3
factorise : 8(2a + 3b)3 - 12(2a + 3b)2
Factorise xy2 - xz2, Hence, find the value of :
9 x 82 - 9 x 22
Factorise the following by taking out the common factors:
2a(p2 + q2) + 4b(p2 + q2)
Factorise the following by taking out the common factors:
p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)