Advertisements
Advertisements
Question
Factorise the following by taking out the common factors:
2a(p2 + q2) + 4b(p2 + q2)
Solution
2a(p2 + q2) + 4b(p2 + q2)
Here, the common factor is 2(p2 + q2)
Dividing throughtout by 2(p2 + q2), we get
`(2"a"("p"^2 + "q"^2))/(2("p"^2 + "q"^2)) + (4"b"("p"^2 + "q"^2))/(2("p"^2 + "q"^2)`
= a + 2b
∴ 2a(p2 + q2) + 4b(p2 + q2)
= 2(p2 + q2)(a + 2b).
APPEARS IN
RELATED QUESTIONS
Find the common factors of the terms.
6 abc, 24ab2, 12a2b
Factorise the following expression:
7x − 42
Factorise the following expression:
6p − 12q
Factorise the following expression:
−16z + 20z3
Factorise the following expression:
5x2y − 15xy2
Factorise.
z − 7 + 7xy − xyz
Factorize the following:
72x6y7 − 96x7y6
Factorize the following:
28a2 + 14a2b2 − 21a4
Factorize the following:
x2yz + xy2z + xyz2
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Factorise : 4x4 + 9y4 + 11x2y2
Factorise : a - b - 4a2 + 4b2
Factorise : x4 + y4 - 3x2y2
Factorise:
5a2 - b2 - 4ab + 7a - 7b
Factorise : 3 - 5x + 5y - 12(x - y)2
Factorise : 9x 2 + 3x - 8y - 64y2
Find the value of : ( 987 )2 - (13)2
Find the value of : `[(6.7)^2 - (3.3)^2]/[6.7 - 3.3]`
Find the value of : `[(18.5)^2 - (6.5)^2]/[18.5 + 6.5]`
Factorise : 15x + 5
Factorise : 4a2 - 8ab
Factorise : 17a6b8 - 34a4b6 + 51a2b4
Factorise : 2b (2a + b) - 3c (2a + b)
factorise : 6x3 - 8x2
factorise : a2 - ab - 3a + 3b
factorise : ab(x2 + y2) - xy (a2 + b2)
Factorise xy2 - xz2, Hence, find the value of :
40 x 5.52 - 40 x 4.52
Factorise: a4 - 625
Factorise the following by taking out the common factors:
4x2y3 - 6x3y2 - 12xy2
Factorise the following by taking out the common factors:
2x5y + 8x3y2 - 12x2y3