Advertisements
Advertisements
प्रश्न
Factorise the following by taking out the common factors:
2a(p2 + q2) + 4b(p2 + q2)
उत्तर
2a(p2 + q2) + 4b(p2 + q2)
Here, the common factor is 2(p2 + q2)
Dividing throughtout by 2(p2 + q2), we get
`(2"a"("p"^2 + "q"^2))/(2("p"^2 + "q"^2)) + (4"b"("p"^2 + "q"^2))/(2("p"^2 + "q"^2)`
= a + 2b
∴ 2a(p2 + q2) + 4b(p2 + q2)
= 2(p2 + q2)(a + 2b).
APPEARS IN
संबंधित प्रश्न
Factorise the following expression:
6p − 12q
Factorise the following expression:
7a2 + 14a
Factorise the following expression:
5x2y − 15xy2
Factorise the following expression:
10a2 − 15b2 + 20c2
Factorise the following expression:
− 4a2 + 4ab − 4 ca
Factorise the following expression:
x2yz + xy2z + xyz2
Factorise.
x2 + xy + 8x + 8y
Factorize the following:
3x − 9
Factorize the following:
a4b − 3a2b2 − 6ab3
Factorise : `x^2 + [a^2 + 1]/a x + 1`
Factorise : 12(3x - 2y)2 - 3x + 2y - 1
Find the value of : `[(6.7)^2 - (3.3)^2]/[6.7 - 3.3]`
Factorise : 15x + 5
Factorise : 15x4y3 - 20x3y
Factorise : 17a6b8 - 34a4b6 + 51a2b4
Factorise : 3x5y - 27x4y2 + 12x3y3
Factorise : 12abc - 6a2b2c2 + 3a3b3c3
Factorise : (a+ 2b) (3a + b) - (a+ b) (a+ 2b) +(a+ 2b)2
factorise : 35a3b2c + 42ab2c2
factorise : 8(2a + 3b)3 - 12(2a + 3b)2
factorise : ab(x2 + y2) - xy (a2 + b2)
Factorise xy2 - xz2, Hence, find the value of :
9 x 82 - 9 x 22
Factorise the following by taking out the common factors:
5a(x2 - y2) + 35b(x2 - y2)
Factorise the following by taking out the common factors:
36(x + y)3 - 54(x + y)2
Factorise the following by taking out the common factors:
p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)
Factorise:
x4 + y4 - 6x2y2
Factorise:
`"p"^2 + (1)/"p"^2 - 3`