Advertisements
Advertisements
प्रश्न
Factorise:
`"p"^2 + (1)/"p"^2 - 3`
उत्तर
`"p"^2 + (1)/"p"^2 - 3`
= `"P"^2 + (1)/"p"^2 - 2 - 1`
= `("p"^2 + (1)/"p"^2 - 2 xx "p" xx 1/"p") -1`
= `("p" - 1/"p")^2 - 1^2`
= `("p" - 1/"p" + 1)("p" - 1/"p" - 1)`.
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
10pq, 20qr, 30rp
Factorise the following expression:
− 4a2 + 4ab − 4 ca
Factorise the following expression:
ax2y + bxy2 + cxyz
Factorise.
15xy − 6x + 5y − 2
Factorise.
ax + bx − ay − by
Factorise.
15pq + 15 + 9q + 25p
Factorize the following:
3x − 9
Factorize the following:
20a12b2 − 15a8b4
Factorize the following:
72x6y7 − 96x7y6
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factorize the following:
−4a2 + 4ab − 4ca
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Factorise : 3 - 5x + 5y - 12(x - y)2
Find the value of : ( 67.8 )2 - ( 32.2 )2
Find the value of : `[(6.7)^2 - (3.3)^2]/[6.7 - 3.3]`
Find the value of : `[(18.5)^2 - (6.5)^2]/[18.5 + 6.5]`
Factorise : x2(a-b)-y2 (a-b)+z2(a-b)
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
factorise : 35a3b2c + 42ab2c2
factorise : ab(x2 + y2) - xy (a2 + b2)
Factorise xy2 - xz2, Hence, find the value of :
40 x 5.52 - 40 x 4.52
Factorise: a4 - 625
Factorise the following by taking out the common factors:
2a(p2 + q2) + 4b(p2 + q2)
Factorise the following by taking out the common factors:
36(x + y)3 - 54(x + y)2
Factorise the following by taking out the common factors:
p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Factorise:
x4 + y4 - 6x2y2
Factorise:
5x2 - y2 - 4xy + 3x - 3y