Advertisements
Advertisements
प्रश्न
Factorise the following by taking out the common factors:
p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)
उत्तर
p(p2 + q2 - r2) + q(r2 - q2 - p2) - r(p2 + q2 - r2)
= p(p2 + q2 - r2) - q(-r2 + q2 + p2) - r(p2 + q2 - r2)
= p(p2 + q2 - r2) - q(p2 + q2 - r2) - r(p2 + q2 - r2)
Here, the common factor is (p2 + q2 - r2).
Dividing throughout by (p2 + q2 - r2)
`("p"("p"^2 + "q"^2 - "r"^2))/("p"^2 + "q"^2 - "r"^2) - ("q"("p"^2 + "q"^2 - "r"^2))/(("p"^2 + "q"^2 - "r"^2)) - ("r"("p"^2 + "q"^2 - "r"^2))/(("p"^2 + "q"^2 - "r"^2))`
= p - q - r
∴ p(p2 + q2 - r2) + q(r2 - q2 - p2) - r(p2 + q2 - r2)
= (p2 + q2 - r2)(p - q - r).
APPEARS IN
संबंधित प्रश्न
Factorise the following expression:
−16z + 20z3
Factorise the following expression:
− 4a2 + 4ab − 4 ca
Factorise.
x2 + xy + 8x + 8y
Factorise.
15xy − 6x + 5y − 2
Factorize the following:
72x6y7 − 96x7y6
Factorize the following:
−4a2 + 4ab − 4ca
Factories by taking out common factors :
xy(3x2 - 2y2) - yz(2y2 - 3x2) + zx(15x2 - 10y2)
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Factorise : `x^2 + [a^2 + 1]/a x + 1`
Factorise:
`x^4 + y^4 - 27x^2y^2`
Factorise : `x^2 + 1/x^2 - 3`
Factorise : a - b - 4a2 + 4b2
Factorise : x4 + y4 - 3x2y2
Factorise : 9x 2 + 3x - 8y - 64y2
Factorise : 2(ab + cd) - a2 - b2 + c2 + d2
Factorise : 17a6b8 - 34a4b6 + 51a2b4
Factorise : 12abc - 6a2b2c2 + 3a3b3c3
factorise : 35a3b2c + 42ab2c2
Factorise: 36x2y2 - 30x3y3 + 48x3y2
factorise : a2 - ab - 3a + 3b
Factorise : a2 - ab(1 - b) - b3
Factorise xy2 - xz2, Hence, find the value of :
9 x 82 - 9 x 22
Factorise: a2 - 0·36 b2
Factorise: a4 - 625
Factorise the following by taking out the common factors:
4x2y3 - 6x3y2 - 12xy2
Factorise:
x4 + y4 - 6x2y2
Factorise:
`"p"^2 + (1)/"p"^2 - 3`