Advertisements
Advertisements
प्रश्न
Factorise : x4 + y4 - 3x2y2
उत्तर
x4 + y4 - 3x2y2
= x4 + y4 - 2x2y2 - x2y2
= (x2)2 + (y2)2 - 2x2y2 - x2y2
= ( x2 - y2 )2 - (xy)2
= ( x2 - y2 - xy )( x2 - y2 + xy ) [ ∵ a2 - b2 = ( a + b )( a - b )]
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
2y, 22xy
Factorise the following expression:
5x2y − 15xy2
Factorise the following expression:
x2yz + xy2z + xyz2
Factorise the following expression:
ax2y + bxy2 + cxyz
Factorise.
15xy − 6x + 5y − 2
Factorise.
15pq + 15 + 9q + 25p
Factorize the following:
10m3n2 + 15m4n − 20m2n3
Factorize the following:
28a2 + 14a2b2 − 21a4
Factorize the following:
16m − 4m2
Factorize the following:
x2yz + xy2z + xyz2
Factorise by taking out the common factors :
2 (2x - 5y) (3x + 4y) - 6 (2x - 5y) (x - y)
Factories by taking out common factors :
2x(a - b) + 3y(5a - 5b) + 4z(2b - 2a)
Factorise:
`x^4 + y^4 - 27x^2y^2`
Factorise : a - b - 4a2 + 4b2
Factorise:
(2a - 3)2 - 2 (2a - 3) (a - 1) + (a - 1)2
Factorise : (a2 - 3a) (a2 - 3a + 7) + 10
Factorise : (a2 - a) (4a2 - 4a - 5) - 6
Factorise : 4(2x - 3y)2 - 8x+12y - 3
Factorise : 3x2 + 6x3
Factorise : 4a2 - 8ab
Factorise : (a+ 2b) (3a + b) - (a+ b) (a+ 2b) +(a+ 2b)2
factorise : (ax + by)2 + (bx - ay)2
factorise : m - 1 - (m-1)2 + am - a
Factorise: a2 - 0·36 b2
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Factorise the following by taking out the common factor
18xy – 12yz