Advertisements
Advertisements
प्रश्न
Factorise : x4 + y4 - 3x2y2
उत्तर
x4 + y4 - 3x2y2
= x4 + y4 - 2x2y2 - x2y2
= (x2)2 + (y2)2 - 2x2y2 - x2y2
= ( x2 - y2 )2 - (xy)2
= ( x2 - y2 - xy )( x2 - y2 + xy ) [ ∵ a2 - b2 = ( a + b )( a - b )]
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
12x, 36
Find the common factors of the terms.
14pq, 28p2q2
Factorise the following expression:
6p − 12q
Factorise the following expression:
20 l2m + 30 alm
Factorise the following expression:
10a2 − 15b2 + 20c2
Factorise.
ax + bx − ay − by
Factorise.
15pq + 15 + 9q + 25p
Factorize the following:
20a12b2 − 15a8b4
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factorize the following:
9x2y + 3axy
Factorize the following:
x2yz + xy2z + xyz2
Factories by taking out common factors :
xy(3x2 - 2y2) - yz(2y2 - 3x2) + zx(15x2 - 10y2)
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Factorise : `x^2 + [a^2 + 1]/a x + 1`
Factorise : 4x4 + 9y4 + 11x2y2
Factorise : (a2 - 3a) (a2 - 3a + 7) + 10
Factorise:
5a2 - b2 - 4ab + 7a - 7b
Find the value of : ( 67.8 )2 - ( 32.2 )2
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
factorise : 8(2a + 3b)3 - 12(2a + 3b)2
factorise:
9a (x − 2y)4 − 12a (x − 2y)3
factorise : m - 1 - (m-1)2 + am - a
Factorise xy2 - xz2, Hence, find the value of :
9 x 82 - 9 x 22
Factorise: x4 - 5x2 - 36
Factorise the following by taking out the common factors:
12a3 + 15a2b - 21ab2
Factorise the following by taking out the common factors:
(mx + ny)2 + (nx - my)2
Factorise the following by taking out the common factors:
36(x + y)3 - 54(x + y)2
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Factorise:
5x2 - y2 - 4xy + 3x - 3y