Advertisements
Advertisements
प्रश्न
Factorise : (a2 - 3a) (a2 - 3a + 7) + 10
उत्तर
(a2 - 3a) (a2 - 3a + 7) + 10
Let us assume , a2 - 3a = x
Then, our polynomial becomes,
( a2 - 3a )( a2 - 3a + 7 ) + 10
= x( x + 7 ) + 10
= x2 + 7x + 10
= x2 + 5x + 2x + 10
= x( x + 5 ) + 2 ( x + 5 )
= ( x + 5 )( x + 2 )
By resubstituting the value of x,
= (a2 - 3a + 5)( a2 - 3a + 2 )
Now, a2 - 3a + 5 will have no factor as discriminant is -11 that is less than 0.
And,
∴ a2 - 3a + 2 = a2 - 2a - a + 2 = a( a - 2) - 1(a - 2) = (a - 1)(a - 2)
So, factor of given polynomial are,
a2 - 3a + 2 = a2 - 2a - a + 2
= (a2 - 3a + 5)(a - 1)(a - 2)
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
3x2y3, 10x3y2, 6x2y2z
Factorise the following expression:
7x − 42
Factorise the following expression:
7a2 + 14a
Factorise the following expression:
5x2y − 15xy2
Factorise the following expression:
10a2 − 15b2 + 20c2
Factorize the following:
3x − 9
Factorize the following:
5x − 15x2
Factorize the following:
10m3n2 + 15m4n − 20m2n3
Factorize the following:
2l2mn - 3lm2n + 4lmn2
Factorize the following:
16m − 4m2
Factorize the following:
−4a2 + 4ab − 4ca
Factorise : `x^2 + 1/x^2 - 3`
Factorise : 4(2x - 3y)2 - 8x+12y - 3
Factorise : 3 - 5x + 5y - 12(x - y)2
Find the value of : ( 67.8 )2 - ( 32.2 )2
Factorise : 15x + 5
Factorise : 4a2 - 8ab
Factorise : 4x(3x - 2y) - 2y(3x - 2y)
factorise : 6x3 - 8x2
factorise:
9a (x − 2y)4 − 12a (x − 2y)3
factorise : (ax + by)2 + (bx - ay)2
factorise : m - 1 - (m-1)2 + am - a
Factorise xy2 - xz2, Hence, find the value of :
9 x 82 - 9 x 22
Factorise the following by taking out the common factors:
5a(x2 - y2) + 35b(x2 - y2)
Factorise the following by taking out the common factors:
2a(p2 + q2) + 4b(p2 + q2)
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Factorise the following by taking out the common factor
18xy – 12yz