Advertisements
Advertisements
प्रश्न
factorise : (ax + by)2 + (bx - ay)2
उत्तर
(ax + by)2 + (bx - ay)2
= (ax)2 + 2 × ax × by + (by)2 + (bx)2 - 2 × bx × ay + (ay)2
= a2x2 + 2abxy + b2y2 + b2x2 - 2abxy + a2y2
= a2x2 + `cancel(2 "abxy")` + b2y2 + b2x2 - `cancel(2" abxy")` + a2y2
= a2x2 + b2y2 + b2x2 + a2y2
= a2x2 + a2y2 + b2x2 + b2y2
= a2 (x2 + y2) + b2(x2 + y2)
= (x2 + y2)(a2 + b2)
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
2y, 22xy
Factorise the following expression:
6p − 12q
Factorise the following expression:
−16z + 20z3
Factorize the following:
2x3y2 − 4x2y3 + 8xy4
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factorize the following:
2l2mn - 3lm2n + 4lmn2
Factories by taking out common factors :
xy(3x2 - 2y2) - yz(2y2 - 3x2) + zx(15x2 - 10y2)
Factorise : 4(2x - 3y)2 - 8x+12y - 3
Factorise : 3 - 5x + 5y - 12(x - y)2
Factorise : a3 - a2 +a
Factorise : 2b (2a + b) - 3c (2a + b)
Factorise : (a+ 2b) (3a + b) - (a+ b) (a+ 2b) +(a+ 2b)2
factorise : ab(x2 + y2) - xy (a2 + b2)
Factorise the following by taking out the common factors:
(a - b)2 -2(a - b)
Factorise:
`y^2 + (1)/(4y^2) + 1 - 6y - (3)/y`
Factorise:
4x4 + 25y4 + 19x2y2
Factorise:
5x2 - y2 - 4xy + 3x - 3y
Factorise the following by taking out the common factor
18xy – 12yz