Advertisements
Advertisements
Question
factorise : (ax + by)2 + (bx - ay)2
Solution
(ax + by)2 + (bx - ay)2
= (ax)2 + 2 × ax × by + (by)2 + (bx)2 - 2 × bx × ay + (ay)2
= a2x2 + 2abxy + b2y2 + b2x2 - 2abxy + a2y2
= a2x2 + `cancel(2 "abxy")` + b2y2 + b2x2 - `cancel(2" abxy")` + a2y2
= a2x2 + b2y2 + b2x2 + a2y2
= a2x2 + a2y2 + b2x2 + b2y2
= a2 (x2 + y2) + b2(x2 + y2)
= (x2 + y2)(a2 + b2)
APPEARS IN
RELATED QUESTIONS
Find the common factors of the terms.
3x2y3, 10x3y2, 6x2y2z
Factorise the following expression:
7a2 + 14a
Factorise the following expression:
− 4a2 + 4ab − 4 ca
Factorize the following:
−4a2 + 4ab − 4ca
Factorise by taking out the common factors :
2 (2x - 5y) (3x + 4y) - 6 (2x - 5y) (x - y)
Factories by taking out common factors :
ab(a2 + b2 - c2) - bc(c2 - a2 - b2) + ca(a2 + b2 - c2)
Factorise : `(9a)^2 + 1/(9a)^2 - 2 - 12a + 4/(3a)`
Factorise : 12(3x - 2y)2 - 3x + 2y - 1
Factorise : 9x 2 + 3x - 8y - 64y2
Factorise : `1/4 ( a + b )^2 - 9/16 ( 2a - b )^2`
Find the value of : `[(6.7)^2 - (3.3)^2]/[6.7 - 3.3]`
Factorise : 3x2 + 6x3
Factorise : 6x2y + 9xy2 + 4y3
Factorise : 12abc - 6a2b2c2 + 3a3b3c3
Factorise: x4 - 5x2 - 36
Factorise the following by taking out the common factors:
2x5y + 8x3y2 - 12x2y3
Factorise the following by taking out the common factors:
(a - b)2 -2(a - b)
Factorise the following by taking out the common factors:
36(x + y)3 - 54(x + y)2
Factorise:
`y^2 + (1)/(4y^2) + 1 - 6y - (3)/y`