Advertisements
Advertisements
Question
Factorise : `1/4 ( a + b )^2 - 9/16 ( 2a - b )^2`
Solution
`1/4 ( a + b )^2 - 9/16 ( 2a - b )^2`
=`1/4 [ ( a + b )^2 - 9/4( 2a - b )^2 ]`
=`1/4 [ ( a + b )^2 - [3/2( 2a - b )^2] ]`
=`1/4 [( a + b + 3/2(2a - b))( a + b - 3/2( 2a - b ))]`
=`1/4[( a + b + 3a - (3b)/2)( a + b - 3a + (3b)/2 )]`
= `1/4[( 4a - b/2 )( (5b)/2 - 2a )]`
= `1/4[(( 8a - b )/2)([ 5b - 4a ]/2)]`
= `1/4[ 1/4( 8a - b )( 5b - 4a )]`
= `1/16 ( 8a - b )( 5b - 4a )`
APPEARS IN
RELATED QUESTIONS
Find the common factors of the terms.
2y, 22xy
Find the common factors of the terms.
6 abc, 24ab2, 12a2b
Factorise the following expression:
5x2y − 15xy2
Factorise.
ax + bx − ay − by
Factorize the following:
20a12b2 − 15a8b4
Factorize the following:
2x3y2 − 4x2y3 + 8xy4
Factorize the following:
10m3n2 + 15m4n − 20m2n3
Factorize the following:
x2yz + xy2z + xyz2
Factories by taking out common factors :
xy(3x2 - 2y2) - yz(2y2 - 3x2) + zx(15x2 - 10y2)
Factorise : `x^2 + [a^2 + 1]/a x + 1`
Factorise : 4x4 + 9y4 + 11x2y2
Factorise : a - b - 4a2 + 4b2
Factorise : 3x2 + 6x3
Factorise : 4a2 - 8ab
Factorise : a3b - a2b2 - b3
Factorise : 17a6b8 - 34a4b6 + 51a2b4
Factorise : (x + y)(a + b) + (x - y)(a + b)
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
factorise : 35a3b2c + 42ab2c2
Factorise: 36x2y2 - 30x3y3 + 48x3y2
factorise : a2 - ab - 3a + 3b
factorise : m - 1 - (m-1)2 + am - a
Factorise the following by taking out the common factors:
5a(x2 - y2) + 35b(x2 - y2)
Factorise the following by taking out the common factors:
24m4n6 + 56m6n4 - 72m2n2
Factorise the following by taking out the common factors:
2a(p2 + q2) + 4b(p2 + q2)
Factorise:
4x4 + 25y4 + 19x2y2
Factorise:
5x2 - y2 - 4xy + 3x - 3y