Advertisements
Advertisements
Question
Factorise:
4x4 + 25y4 + 19x2y2
Solution
4x4 + 25y4 + 19x2y2
= 4x4 + 25y4 + 20x2y2 - x2y2
= (2x2)2 + (5y2)2 + 2 x (2x2) x (5y2) - x2y2
= [(2x2)2 + (5y2) + 2 x (2x2) x (5y2)] -x2y2
= [2x2 + 5y2] - (xy)2
= (2x2 + 5y2 - xy)(2x2 - 5y + xy).
APPEARS IN
RELATED QUESTIONS
Find the common factors of the terms.
12x, 36
Find the common factors of the terms.
3x2y3, 10x3y2, 6x2y2z
Factorise the following expression:
7x − 42
Factorise the following expression:
6p − 12q
Factorise the following expression:
10a2 − 15b2 + 20c2
Factorize the following:
72x6y7 − 96x7y6
Factorize the following:
20x3 − 40x2 + 80x
Factorize the following:
28a2 + 14a2b2 − 21a4
Factorize the following:
16m − 4m2
Factorize the following:
−4a2 + 4ab − 4ca
Factorize the following:
ax2y + bxy2 + cxyz
Factories by taking out common factors :
xy(3x2 - 2y2) - yz(2y2 - 3x2) + zx(15x2 - 10y2)
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Factorise : `x^2 + [a^2 + 1]/a x + 1`
Factorise : x4 + y4 - 3x2y2
Factorise : 2√3x2 + x - 5√3
Find the value of : `[(6.7)^2 - (3.3)^2]/[6.7 - 3.3]`
Factorise : 15x + 5
Factorise : 2x3b2 - 4x5b4
Factorise : 17a6b8 - 34a4b6 + 51a2b4
Factorise : 3x5y - 27x4y2 + 12x3y3
Factorise : (x + y)(a + b) + (x - y)(a + b)
Factorise : 4x(3x - 2y) - 2y(3x - 2y)
factorise : 8(2a + 3b)3 - 12(2a + 3b)2
factorise:
9a (x − 2y)4 − 12a (x − 2y)3
factorise : ab(x2 + y2) - xy (a2 + b2)
factorise : m - 1 - (m-1)2 + am - a
Factorise the following by taking out the common factors:
4x2y3 - 6x3y2 - 12xy2
Factorise the following by taking out the common factors:
24m4n6 + 56m6n4 - 72m2n2
Factorise the following by taking out the common factor
18xy – 12yz