Advertisements
Advertisements
Question
Factorise the following by taking out the common factors:
24m4n6 + 56m6n4 - 72m2n2
Solution
24m4n6 + 56m6n4 - 72m2n2
Here, the common factor is 8m2n2
Dividing throughout by 3a, we get
`(24"m"^4"n"^6)/(8"m"^2"n"^2) + (56"m"6"n")/(8"m"^2"n"^2) - (72"m"^2"n"^2)/(8"m"^2"n"^2)`
= 3m2n4 + 7m4n2 - 9
∴ 24m4n6 + 56m6n4 - 72m2n2
= 8m2n2(3m2n4 + 7m4n2 - 9).
APPEARS IN
RELATED QUESTIONS
Find the common factors of the terms.
16x3, −4x2, 32x
Factorise the following expression:
7a2 + 14a
Factorise the following expression:
20 l2m + 30 alm
Factorise the following expression:
10a2 − 15b2 + 20c2
Factorize the following:
2l2mn - 3lm2n + 4lmn2
Factorize the following:
16m − 4m2
Factorize the following:
−4a2 + 4ab − 4ca
Factorize the following:
x2yz + xy2z + xyz2
Factorize the following:
ax2y + bxy2 + cxyz
Factories by taking out common factors :
xy(3x2 - 2y2) - yz(2y2 - 3x2) + zx(15x2 - 10y2)
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Factorise : `x^2 + [a^2 + 1]/a x + 1`
Factorise : `x^2 + 1/x^2 - 3`
Factorise:
(2a - 3)2 - 2 (2a - 3) (a - 1) + (a - 1)2
Factorise : (a2 - 3a) (a2 - 3a + 7) + 10
Factorise : 9x 2 + 3x - 8y - 64y2
Factorise : 2(ab + cd) - a2 - b2 + c2 + d2
Factorise : a3b - a2b2 - b3
Factorise : 2b (2a + b) - 3c (2a + b)
Factorise : 12abc - 6a2b2c2 + 3a3b3c3
Factorise : 4x(3x - 2y) - 2y(3x - 2y)
factorise : 6x3 - 8x2
factorise : 35a3b2c + 42ab2c2
Factorise : a2 - ab(1 - b) - b3
Factorise: a2 - 0·36 b2
Factorise the following by taking out the common factors:
12a3 + 15a2b - 21ab2
Factorise:
`y^2 + (1)/(4y^2) + 1 - 6y - (3)/y`
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Factorise:
`"p"^2 + (1)/"p"^2 - 3`