Advertisements
Advertisements
प्रश्न
Factorise the following by taking out the common factors:
24m4n6 + 56m6n4 - 72m2n2
उत्तर
24m4n6 + 56m6n4 - 72m2n2
Here, the common factor is 8m2n2
Dividing throughout by 3a, we get
`(24"m"^4"n"^6)/(8"m"^2"n"^2) + (56"m"6"n")/(8"m"^2"n"^2) - (72"m"^2"n"^2)/(8"m"^2"n"^2)`
= 3m2n4 + 7m4n2 - 9
∴ 24m4n6 + 56m6n4 - 72m2n2
= 8m2n2(3m2n4 + 7m4n2 - 9).
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
14pq, 28p2q2
Factorise the following expression:
5x2y − 15xy2
Factorise.
x2 + xy + 8x + 8y
Factorise.
15xy − 6x + 5y − 2
Factorise.
ax + bx − ay − by
Factorise.
z − 7 + 7xy − xyz
Factorize the following:
10m3n2 + 15m4n − 20m2n3
Factorize the following:
28a2 + 14a2b2 − 21a4
Factorize the following:
a4b − 3a2b2 − 6ab3
Factorize the following:
ax2y + bxy2 + cxyz
Factorise:
`x^4 + y^4 - 27x^2y^2`
Factorise : x4 + y4 - 3x2y2
Factorise:
5a2 - b2 - 4ab + 7a - 7b
Factorise : 4(2x - 3y)2 - 8x+12y - 3
Factorise : 9x 2 + 3x - 8y - 64y2
Find the value of : ( 67.8 )2 - ( 32.2 )2
Factorise : 4a2 - 8ab
Factorise : 15x4y3 - 20x3y
Factorise : 3x5y - 27x4y2 + 12x3y3
Factorise : 12abc - 6a2b2c2 + 3a3b3c3
Factorise: 36x2y2 - 30x3y3 + 48x3y2
factorise : x2y - xy2 + 5x - 5y
factorise : (ax + by)2 + (bx - ay)2
factorise : ab(x2 + y2) - xy (a2 + b2)
Factorise: x4 - 5x2 - 36
Factorise the following by taking out the common factors:
2x5y + 8x3y2 - 12x2y3
Factorise the following by taking out the common factors:
p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`