Advertisements
Advertisements
प्रश्न
Factorise the following by taking out the common factors:
2x5y + 8x3y2 - 12x2y3
उत्तर
2x5y + 8x3y2 - 12x2y3
Here, the common factor is 2x2y.
Dividing throughout by 2x2y, we get
`(2x^5y)/(2x^2y) + (8X^3y^2)/(2x^2y) - (12x^2y^3)/(2x^2y)`
= x3 + 4xy - 6y2
∴ 2x5y + 8x3y2 - 12x2y3
= 2x2y(x3 + 4xy - 6y2).
APPEARS IN
संबंधित प्रश्न
Factorise the following expression:
7a2 + 14a
Factorise the following expression:
x2yz + xy2z + xyz2
Factorise.
x2 + xy + 8x + 8y
Factorise.
15xy − 6x + 5y − 2
Factorise.
15pq + 15 + 9q + 25p
Factorize the following:
2x3y2 − 4x2y3 + 8xy4
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Factorise : 4x4 + 9y4 + 11x2y2
Factorise : `x^2 + 1/x^2 - 3`
Factorise : (a2 - 3a) (a2 - 3a + 7) + 10
Factorise : `1/4 ( a + b )^2 - 9/16 ( 2a - b )^2`
Find the value of : `[(18.5)^2 - (6.5)^2]/[18.5 + 6.5]`
Factorise : 15x + 5
Factorise : 3x2 + 6x3
Factorise : 15x4y3 - 20x3y
Factorise : a3b - a2b2 - b3
Factorise : 6x2y + 9xy2 + 4y3
Factorise : 3x5y - 27x4y2 + 12x3y3
Factorise : (a+ 2b) (3a + b) - (a+ b) (a+ 2b) +(a+ 2b)2
factorise : ab(x2 + y2) - xy (a2 + b2)
Factorise: x4 - 5x2 - 36
Factorise the following by taking out the common factors:
4x2y3 - 6x3y2 - 12xy2
Factorise the following by taking out the common factors:
(mx + ny)2 + (nx - my)2
Factorise:
x4 + y4 - 6x2y2
Factorise:
5x2 - y2 - 4xy + 3x - 3y