Advertisements
Advertisements
प्रश्न
Factorise the following by taking out the common factors:
(mx + ny)2 + (nx - my)2
उत्तर
(mx + ny)2 + (nx - my)2
= m2x2 + n2y2 + 2mnxy + n2x2 + m2y2 - 2mnxy
= m2x2 + n2y2 + n2x2 + m2y2
= m2x2 + n2x2 + m2y2 + n2y2
= x2(m2 + n2) + y2(m2 + n2)
Here, the common factor is (m2 + n2).
Dividing throughout by (m2 + n2), we get
`(x^2("m"^2 + "n"^2))/(("m"^2 + "n"^2)) + (y^2("m"^2 + "n"^2))/(("m"^2 + "n"^2)`
= x2 + y2
∴ (mx + ny)2 + (nx - my)2
= (m2 + n2)(x2 + y2).
APPEARS IN
संबंधित प्रश्न
Factorise the following expression:
7x − 42
Factorise the following expression:
6p − 12q
Factorise the following expression:
5x2y − 15xy2
Factorise the following expression:
10a2 − 15b2 + 20c2
Factorize the following:
5x − 15x2
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factorize the following:
28a2 + 14a2b2 − 21a4
Factorize the following:
a4b − 3a2b2 − 6ab3
Factorize the following:
2l2mn - 3lm2n + 4lmn2
Factorise : `(9a)^2 + 1/(9a)^2 - 2 - 12a + 4/(3a)`
Factorise:
(2a - 3)2 - 2 (2a - 3) (a - 1) + (a - 1)2
Factorise : (a2 - 3a) (a2 - 3a + 7) + 10
Factorise : (a2 - a) (4a2 - 4a - 5) - 6
Factorise : 3 - 5x + 5y - 12(x - y)2
Find the value of : `[(18.5)^2 - (6.5)^2]/[18.5 + 6.5]`
Factorise : 2x3b2 - 4x5b4
Factorise : 4x(3x - 2y) - 2y(3x - 2y)
Factorise: 36x2y2 - 30x3y3 + 48x3y2
factorise : 8(2a + 3b)3 - 12(2a + 3b)2
factorise : a2 - ab - 3a + 3b
factorise : x2y - xy2 + 5x - 5y
Factorise : a2 - ab(1 - b) - b3
factorise : xy2 + (x - 1) y - 1
Factorise the following by taking out the common factors:
2x5y + 8x3y2 - 12x2y3
Factorise the following by taking out the common factors:
81(p + q)2 -9p - 9q
Factorise:
`y^2 + (1)/(4y^2) + 1 - 6y - (3)/y`
Factorise:
4x4 + 25y4 + 19x2y2
Factorise the following by taking out the common factor
9x5y3 + 6x3y2 – 18x2y