Advertisements
Advertisements
Question
Factorise the following by taking out the common factors:
(mx + ny)2 + (nx - my)2
Solution
(mx + ny)2 + (nx - my)2
= m2x2 + n2y2 + 2mnxy + n2x2 + m2y2 - 2mnxy
= m2x2 + n2y2 + n2x2 + m2y2
= m2x2 + n2x2 + m2y2 + n2y2
= x2(m2 + n2) + y2(m2 + n2)
Here, the common factor is (m2 + n2).
Dividing throughout by (m2 + n2), we get
`(x^2("m"^2 + "n"^2))/(("m"^2 + "n"^2)) + (y^2("m"^2 + "n"^2))/(("m"^2 + "n"^2)`
= x2 + y2
∴ (mx + ny)2 + (nx - my)2
= (m2 + n2)(x2 + y2).
APPEARS IN
RELATED QUESTIONS
Find the common factors of the terms.
2y, 22xy
Factorise the following expression:
−16z + 20z3
Factorise the following expression:
20 l2m + 30 alm
Factorise the following expression:
5x2y − 15xy2
Factorise the following expression:
− 4a2 + 4ab − 4 ca
Factorise the following expression:
ax2y + bxy2 + cxyz
Factorise.
15pq + 15 + 9q + 25p
Factorize the following:
10m3n2 + 15m4n − 20m2n3
Factorize the following:
a4b − 3a2b2 − 6ab3
Factorize the following:
x2yz + xy2z + xyz2
Factories by taking out common factors :
ab(a2 + b2 - c2) - bc(c2 - a2 - b2) + ca(a2 + b2 - c2)
Factorise : `(9a)^2 + 1/(9a)^2 - 2 - 12a + 4/(3a)`
Factorise:
`x^4 + y^4 - 27x^2y^2`
Factorise : 4x4 + 9y4 + 11x2y2
Factorise:
(2a - 3)2 - 2 (2a - 3) (a - 1) + (a - 1)2
Factorise : 2(ab + cd) - a2 - b2 + c2 + d2
Factorise : 6x2y + 9xy2 + 4y3
Factorise : 17a6b8 - 34a4b6 + 51a2b4
Factorise : (a+ 2b) (3a + b) - (a+ b) (a+ 2b) +(a+ 2b)2
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
factorise : 8(2a + 3b)3 - 12(2a + 3b)2
factorise : a2 - ab - 3a + 3b
Factorise the following by taking out the common factors:
2x5y + 8x3y2 - 12x2y3
Factorise the following by taking out the common factors:
(a - b)2 -2(a - b)
Factorise the following by taking out the common factors:
2a(p2 + q2) + 4b(p2 + q2)
Factorise:
`"p"^2 + (1)/"p"^2 - 3`
Factorise:
5x2 - y2 - 4xy + 3x - 3y
Factorise the following by taking out the common factor
18xy – 12yz