Advertisements
Advertisements
Question
Factorise : 4x4 + 9y4 + 11x2y2
Solution
4x4 + 9y4 + 11x2y2
= (2x2)2 + (3y2)2 + 12x2y2 - x2y2
= (2x2 + 3y2)2 - x2y2
= (2x2 + 3y2)2 - (xy)2
= ( 2x2 + 3y2 - xy )( 2x2 + 3y2 + xy) [ ∵ a2 - b2 = ( a + b )( a - b )]
APPEARS IN
RELATED QUESTIONS
Find the common factors of the terms.
12x, 36
Find the common factors of the terms.
2y, 22xy
Factorise the following expression:
7a2 + 14a
Factorise the following expression:
5x2y − 15xy2
Factorise.
15xy − 6x + 5y − 2
Factorize the following:
3x − 9
Factorize the following:
2x3y2 − 4x2y3 + 8xy4
Factorize the following:
a4b − 3a2b2 − 6ab3
Factorize the following:
−4a2 + 4ab − 4ca
Factorize the following:
x2yz + xy2z + xyz2
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Factorise : `x^2 + [a^2 + 1]/a x + 1`
Factorise : a - b - 4a2 + 4b2
Factorise:
5a2 - b2 - 4ab + 7a - 7b
Factorise : 12(3x - 2y)2 - 3x + 2y - 1
Factorise : 2(ab + cd) - a2 - b2 + c2 + d2
Find the value of : `[(6.7)^2 - (3.3)^2]/[6.7 - 3.3]`
Factorise : 3x2 + 6x3
factorise : 35a3b2c + 42ab2c2
Factorise: 36x2y2 - 30x3y3 + 48x3y2
factorise:
9a (x − 2y)4 − 12a (x − 2y)3
factorise : m - 1 - (m-1)2 + am - a
Factorise xy2 - xz2, Hence, find the value of :
9 x 82 - 9 x 22
Factorise: x4 - 5x2 - 36
Factorise the following by taking out the common factors:
4x2y3 - 6x3y2 - 12xy2
Factorise the following by taking out the common factors:
24m4n6 + 56m6n4 - 72m2n2
Factorise:
`y^2 + (1)/(4y^2) + 1 - 6y - (3)/y`
Factorise the following by taking out the common factor
18xy – 12yz