Advertisements
Advertisements
Question
Factorise:
`y^2 + (1)/(4y^2) + 1 - 6y - (3)/y`
Solution
`y^2 + (1)/(4y^2) + 1 - 6y - (3)/y`
= `(y^2 + 1/(4y^2) + 1) - (6y + 3/y)`
= `(y + 1/(2y))^2 - 6 (y + 1/(2y))`
= `(y + 1/(2y))(y + 1/(2y) - 6)`.
APPEARS IN
RELATED QUESTIONS
Find the common factors of the terms.
3x2y3, 10x3y2, 6x2y2z
Factorise the following expression:
10a2 − 15b2 + 20c2
Factorise the following expression:
− 4a2 + 4ab − 4 ca
Factorise.
x2 + xy + 8x + 8y
Factorise.
ax + bx − ay − by
Factorise.
z − 7 + 7xy − xyz
Factorize the following:
3x − 9
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factorize the following:
28a2 + 14a2b2 − 21a4
Factorize the following:
2l2mn - 3lm2n + 4lmn2
Factories by taking out common factors :
2x(a - b) + 3y(5a - 5b) + 4z(2b - 2a)
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Factorise:
(2a - 3)2 - 2 (2a - 3) (a - 1) + (a - 1)2
Factorise : (a2 - 3a) (a2 - 3a + 7) + 10
Factorise : 2(ab + cd) - a2 - b2 + c2 + d2
Factorise : 15x + 5
Factorise : 17a6b8 - 34a4b6 + 51a2b4
Factorise : 12abc - 6a2b2c2 + 3a3b3c3
Factorise : a2 - ab(1 - b) - b3
Factorise xy2 - xz2, Hence, find the value of :
9 x 82 - 9 x 22
Factorise: a4 - 625
Factorise the following by taking out the common factors:
4x2y3 - 6x3y2 - 12xy2
Factorise the following by taking out the common factors:
24m4n6 + 56m6n4 - 72m2n2
Factorise the following by taking out the common factors:
(a - b)2 -2(a - b)
Factorise the following by taking out the common factors:
p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)