Advertisements
Advertisements
Question
Factorize the following:
28a2 + 14a2b2 − 21a4
Solution
\[\text{ The greatest common factor of the terms }28 a^2 , 14 a^2 b^2\text{ and }21 a^4\text{ of the expression }28 a^2 + 14 a^2 b^2 - 21 a^4 is 7 a^2 . \]
\[\text{ Also, we can write }28 a^2 = 7 a^2 \times 4, 14 a^2 b^2 = 7 a^2 \times 2 b^2\text{ and }21 a^4 = 7 a^2 \times 3 a^2 . \]
\[ \therefore 28 a^2 + 14 a^2 b^2 - 21 a^4 = 7 a^2 \times 4 + 7 a^2 \times 2 b^2 - 7 a^2 \times 3 a^2 \]
\[ = 7 a^2 (4 + 2 b^2 - 3 a^2 )\]
APPEARS IN
RELATED QUESTIONS
Find the common factors of the terms.
2y, 22xy
Find the common factors of the terms.
3x2y3, 10x3y2, 6x2y2z
Factorise the following expression:
6p − 12q
Factorize the following:
5x − 15x2
Factorize the following:
2x3y2 − 4x2y3 + 8xy4
Factorize the following:
10m3n2 + 15m4n − 20m2n3
Factorize the following:
9x2y + 3axy
Factorise: a2 - 0·36 b2
Factorise the following by taking out the common factors:
2x5y + 8x3y2 - 12x2y3
Factorise:
4x4 + 25y4 + 19x2y2