Advertisements
Advertisements
प्रश्न
Factorize the following:
28a2 + 14a2b2 − 21a4
उत्तर
\[\text{ The greatest common factor of the terms }28 a^2 , 14 a^2 b^2\text{ and }21 a^4\text{ of the expression }28 a^2 + 14 a^2 b^2 - 21 a^4 is 7 a^2 . \]
\[\text{ Also, we can write }28 a^2 = 7 a^2 \times 4, 14 a^2 b^2 = 7 a^2 \times 2 b^2\text{ and }21 a^4 = 7 a^2 \times 3 a^2 . \]
\[ \therefore 28 a^2 + 14 a^2 b^2 - 21 a^4 = 7 a^2 \times 4 + 7 a^2 \times 2 b^2 - 7 a^2 \times 3 a^2 \]
\[ = 7 a^2 (4 + 2 b^2 - 3 a^2 )\]
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
12x, 36
Find the common factors of the terms.
3x2y3, 10x3y2, 6x2y2z
Factorise.
15pq + 15 + 9q + 25p
Factorize the following:
5x − 15x2
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factorize the following:
9x2y + 3axy
Factorise : x4 + y4 - 3x2y2
Factorise:
5a2 - b2 - 4ab + 7a - 7b
Factorise the following by taking out the common factors:
(a - b)2 -2(a - b)
Factorise:
`"p"^2 + (1)/"p"^2 - 3`