Advertisements
Advertisements
प्रश्न
Factorize the following:
28a2 + 14a2b2 − 21a4
उत्तर
\[\text{ The greatest common factor of the terms }28 a^2 , 14 a^2 b^2\text{ and }21 a^4\text{ of the expression }28 a^2 + 14 a^2 b^2 - 21 a^4 is 7 a^2 . \]
\[\text{ Also, we can write }28 a^2 = 7 a^2 \times 4, 14 a^2 b^2 = 7 a^2 \times 2 b^2\text{ and }21 a^4 = 7 a^2 \times 3 a^2 . \]
\[ \therefore 28 a^2 + 14 a^2 b^2 - 21 a^4 = 7 a^2 \times 4 + 7 a^2 \times 2 b^2 - 7 a^2 \times 3 a^2 \]
\[ = 7 a^2 (4 + 2 b^2 - 3 a^2 )\]
APPEARS IN
संबंधित प्रश्न
Factorise.
x2 + xy + 8x + 8y
Factorise : 2(ab + cd) - a2 - b2 + c2 + d2
Factorise : 4a2 - 8ab
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
factorise : 6x3 - 8x2
factorise : x2y - xy2 + 5x - 5y
factorise : m - 1 - (m-1)2 + am - a
Factorise xy2 - xz2, Hence, find the value of :
40 x 5.52 - 40 x 4.52
Factorise:
`y^2 + (1)/(4y^2) + 1 - 6y - (3)/y`
Factorise the following by taking out the common factor
18xy – 12yz