Advertisements
Advertisements
प्रश्न
Factorise:
`y^2 + (1)/(4y^2) + 1 - 6y - (3)/y`
उत्तर
`y^2 + (1)/(4y^2) + 1 - 6y - (3)/y`
= `(y^2 + 1/(4y^2) + 1) - (6y + 3/y)`
= `(y + 1/(2y))^2 - 6 (y + 1/(2y))`
= `(y + 1/(2y))(y + 1/(2y) - 6)`.
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
12x, 36
Find the common factors of the terms.
2y, 22xy
Find the common factors of the terms.
14pq, 28p2q2
Factorise the following expression:
− 4a2 + 4ab − 4 ca
Factorise the following expression:
ax2y + bxy2 + cxyz
Factorize the following:
20x3 − 40x2 + 80x
Factorize the following:
28a2 + 14a2b2 − 21a4
Factorize the following:
−4a2 + 4ab − 4ca
Factories by taking out common factors :
xy(3x2 - 2y2) - yz(2y2 - 3x2) + zx(15x2 - 10y2)
Factories by taking out common factors :
ab(a2 + b2 - c2) - bc(c2 - a2 - b2) + ca(a2 + b2 - c2)
Factories by taking out common factors :
2x(a - b) + 3y(5a - 5b) + 4z(2b - 2a)
Factorise:
`x^4 + y^4 - 27x^2y^2`
Factorise : (a2 - a) (4a2 - 4a - 5) - 6
Factorise:
5a2 - b2 - 4ab + 7a - 7b
Factorise : 3 - 5x + 5y - 12(x - y)2
Factorise : 2(ab + cd) - a2 - b2 + c2 + d2
Factorise : 2x3b2 - 4x5b4
Factorise : 4x(3x - 2y) - 2y(3x - 2y)
Factorise: 36x2y2 - 30x3y3 + 48x3y2
Factorise xy2 - xz2, Hence, find the value of :
9 x 82 - 9 x 22
Factorise the following by taking out the common factors:
4x2y3 - 6x3y2 - 12xy2
Factorise the following by taking out the common factors:
2x5y + 8x3y2 - 12x2y3
Factorise the following by taking out the common factors:
2a(p2 + q2) + 4b(p2 + q2)
Factorise the following by taking out the common factors:
p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Factorise:
x4 + y4 - 6x2y2