Advertisements
Advertisements
प्रश्न
Factorise : (a2 - a) (4a2 - 4a - 5) - 6
उत्तर
Let us assume, a2 - a = x
Then the given expression is,
(a2 - a) (4a2 - 4a - 5) - 6
= x( 4x - 5 ) - 6
= 4x2 - 5x - 6
= 4x2 - 8x + 3x - 6
= 4x( x - 2 ) + 3( x - 2 )
= ( 4x + 3 )( x - 2 )
= [ 4( a2 - a ) + 3 ]( a2 - a - 2 ) [ resubstitute the value of x ]
= [ 4a2 - 4a + 3 ]( a2 - a - 2 )
= [ 4a2 - 4a + 3 ]( a2 - 2a + a - 2 )
= [ 4a2 - 4a + 3 ][ a( a - 2 ) + 1( a - 2 )]
= [ 4a2 - 4a + 3 ]( a - 2 )( a + 1 )
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
6 abc, 24ab2, 12a2b
Factorise the following expression:
7a2 + 14a
Factorise the following expression:
10a2 − 15b2 + 20c2
Factorise the following expression:
− 4a2 + 4ab − 4 ca
Factorise the following expression:
ax2y + bxy2 + cxyz
Factorize the following:
3x − 9
Factorize the following:
2l2mn - 3lm2n + 4lmn2
Factorize the following:
16m − 4m2
Factorise by taking out the common factors :
2 (2x - 5y) (3x + 4y) - 6 (2x - 5y) (x - y)
Factories by taking out common factors :
xy(3x2 - 2y2) - yz(2y2 - 3x2) + zx(15x2 - 10y2)
Factories by taking out common factors :
ab(a2 + b2 - c2) - bc(c2 - a2 - b2) + ca(a2 + b2 - c2)
Factories by taking out common factors :
2x(a - b) + 3y(5a - 5b) + 4z(2b - 2a)
Factorise : `(9a)^2 + 1/(9a)^2 - 2 - 12a + 4/(3a)`
Factorise : 4x4 + 9y4 + 11x2y2
Factorise : (a2 - 3a) (a2 - 3a + 7) + 10
Factorise : 3 - 5x + 5y - 12(x - y)2
Factorise : 2√3x2 + x - 5√3
Factorise : a3 - a2 +a
Factorise : 17a6b8 - 34a4b6 + 51a2b4
Factorise : 2b (2a + b) - 3c (2a + b)
Factorise : 12abc - 6a2b2c2 + 3a3b3c3
factorise : 8(2a + 3b)3 - 12(2a + 3b)2
factorise : (ax + by)2 + (bx - ay)2
Factorise: a2 - 0·36 b2
Factorise the following by taking out the common factors:
4x2y3 - 6x3y2 - 12xy2
Factorise the following by taking out the common factors:
5a(x2 - y2) + 35b(x2 - y2)