Advertisements
Advertisements
प्रश्न
Factorise by taking out the common factors :
2 (2x - 5y) (3x + 4y) - 6 (2x - 5y) (x - y)
उत्तर
2 (2x - 5y) (3x + 4y) - 6 (2x - 5y) (x - y)
Taking (2x - 5y) common from both terms
= (2x - 5y)[2(3x + 4y) - 6(x - y)]
= (2x - 5y)(6x + 8y - 6x + 6y)
= (2x - 5y)(8y + 6y)
= (2x - 5y)(14y)
= (2x - 5y)14y
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
6 abc, 24ab2, 12a2b
Factorise the following expression:
7x − 42
Factorise the following expression:
5x2y − 15xy2
Factorise the following expression:
x2yz + xy2z + xyz2
Factorise.
15xy − 6x + 5y − 2
Factorise.
15pq + 15 + 9q + 25p
Factorise.
z − 7 + 7xy − xyz
Factorize the following:
a4b − 3a2b2 − 6ab3
Factorise : a - b - 4a2 + 4b2
Factorise : x4 + y4 - 3x2y2
Factorise : 12(3x - 2y)2 - 3x + 2y - 1
Factorise : 9x 2 + 3x - 8y - 64y2
Factorise : 2√3x2 + x - 5√3
Find the value of : `[(6.7)^2 - (3.3)^2]/[6.7 - 3.3]`
Factorise : 15x + 5
Factorise : 15x4y3 - 20x3y
Factorise : a3b - a2b2 - b3
Factorise : 17a6b8 - 34a4b6 + 51a2b4
Factorise : x2(a-b)-y2 (a-b)+z2(a-b)
Factorise : (x + y)(a + b) + (x - y)(a + b)
Factorise : 12abc - 6a2b2c2 + 3a3b3c3
Factorise : 4x(3x - 2y) - 2y(3x - 2y)
Factorise: 36x2y2 - 30x3y3 + 48x3y2
factorise : ab(x2 + y2) - xy (a2 + b2)
Factorise: a4 - 625
Factorise the following by taking out the common factors:
36(x + y)3 - 54(x + y)2
Factorise:
4x4 + 25y4 + 19x2y2
Factorise the following by taking out the common factor
9x5y3 + 6x3y2 – 18x2y