Advertisements
Advertisements
प्रश्न
Factorise by taking out the common factors :
2 (2x - 5y) (3x + 4y) - 6 (2x - 5y) (x - y)
उत्तर
2 (2x - 5y) (3x + 4y) - 6 (2x - 5y) (x - y)
Taking (2x - 5y) common from both terms
= (2x - 5y)[2(3x + 4y) - 6(x - y)]
= (2x - 5y)(6x + 8y - 6x + 6y)
= (2x - 5y)(8y + 6y)
= (2x - 5y)(14y)
= (2x - 5y)14y
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
16x3, −4x2, 32x
Factorise the following expression:
7x − 42
Factorise the following expression:
7a2 + 14a
Factorise the following expression:
5x2y − 15xy2
Factorise the following expression:
x2yz + xy2z + xyz2
Factorise.
15xy − 6x + 5y − 2
Factorize the following:
x4y2 − x2y4 − x4y4
Factorize the following:
ax2y + bxy2 + cxyz
Factories by taking out common factors :
xy(3x2 - 2y2) - yz(2y2 - 3x2) + zx(15x2 - 10y2)
Factorise : `x^2 + [a^2 + 1]/a x + 1`
Factorise:
`x^4 + y^4 - 27x^2y^2`
Factorise : `x^2 + 1/x^2 - 3`
Factorise:
(2a - 3)2 - 2 (2a - 3) (a - 1) + (a - 1)2
Factorise : (a2 - a) (4a2 - 4a - 5) - 6
Factorise : a3 - a2 +a
factorise : 6x3 - 8x2
factorise : a2 - ab - 3a + 3b
factorise : x2y - xy2 + 5x - 5y
factorise : xy2 + (x - 1) y - 1
factorise : m - 1 - (m-1)2 + am - a
Factorise xy2 - xz2, Hence, find the value of :
40 x 5.52 - 40 x 4.52
Factorise the following by taking out the common factors:
4x2y3 - 6x3y2 - 12xy2
Factorise the following by taking out the common factors:
81(p + q)2 -9p - 9q
Factorise the following by taking out the common factors:
(mx + ny)2 + (nx - my)2
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Factorise:
x4 + y4 - 6x2y2