Advertisements
Advertisements
प्रश्न
Factorise the following by taking out the common factors:
4x2y3 - 6x3y2 - 12xy2
उत्तर
4x2y3 - 6x3y2 - 12xy2
Here, the common factor is 2xy2.
Dividing throughout by 2xy2, we get
`(4x^2y^3)/(2xy^2) - (6x^3y^2)/(2xy^2) - (12xy^2)/(2xy^2)`
= 2xy - 3x2 - 6
∴ 4x2y2 - 6x3y2 - 12xy2
= 2xy2[2xy - 3x2 - 6].
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
2y, 22xy
Factorise the following expression:
6p − 12q
Factorise the following expression:
20 l2m + 30 alm
Factorise the following expression:
x2yz + xy2z + xyz2
Factorise.
x2 + xy + 8x + 8y
Factorise.
z − 7 + 7xy − xyz
Factorize the following:
20a12b2 − 15a8b4
Factorize the following:
72x6y7 − 96x7y6
Factorize the following:
x4y2 − x2y4 − x4y4
Factorize the following:
9x2y + 3axy
Factories by taking out common factors :
ab(a2 + b2 - c2) - bc(c2 - a2 - b2) + ca(a2 + b2 - c2)
Factories by taking out common factors :
2x(a - b) + 3y(5a - 5b) + 4z(2b - 2a)
Factorise : a - b - 4a2 + 4b2
Factorise:
(2a - 3)2 - 2 (2a - 3) (a - 1) + (a - 1)2
Factorise : 3 - 5x + 5y - 12(x - y)2
Factorise : 2√3x2 + x - 5√3
Find the value of : `[(6.7)^2 - (3.3)^2]/[6.7 - 3.3]`
Find the value of : `[(18.5)^2 - (6.5)^2]/[18.5 + 6.5]`
Factorise : 4x(3x - 2y) - 2y(3x - 2y)
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
factorise : x2y - xy2 + 5x - 5y
Factorise : a2 - ab(1 - b) - b3
Factorise: x4 - 5x2 - 36
Factorise the following by taking out the common factors:
5a(x2 - y2) + 35b(x2 - y2)
Factorise the following by taking out the common factors:
2x5y + 8x3y2 - 12x2y3
Factorise the following by taking out the common factors:
2a(p2 + q2) + 4b(p2 + q2)
Factorise the following by taking out the common factors:
(mx + ny)2 + (nx - my)2
Factorise the following by taking out the common factor
9x5y3 + 6x3y2 – 18x2y