Advertisements
Advertisements
प्रश्न
Factorise the following expression:
20 l2m + 30 alm
उत्तर
20l2m = 2 × 2 × 5 × l × l × m
30alm = 2 × 3 × 5 × a × l × m
The common factors are 2, 5, l, and m.
∴ 20l2m + 30alm = (2 × 2 × 5 × l × l × m) + (2 × 3 × 5 × a × l × m)
= (2 × 5 × l × m) [(2 × l) + (3 × a)]
= 10lm (2l + 3a)
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
16x3, −4x2, 32x
Factorise the following expression:
7x − 42
Factorise.
ax + bx − ay − by
Factorise : `(9a)^2 + 1/(9a)^2 - 2 - 12a + 4/(3a)`
Find the value of : ( 67.8 )2 - ( 32.2 )2
Find the value of : `[(6.7)^2 - (3.3)^2]/[6.7 - 3.3]`
factorise : 8(2a + 3b)3 - 12(2a + 3b)2
factorise:
9a (x − 2y)4 − 12a (x − 2y)3
Factorise the following by taking out the common factors:
4x2y3 - 6x3y2 - 12xy2
Factorise the following by taking out the common factors:
p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)