Advertisements
Advertisements
प्रश्न
Factorise : `(9a)^2 + 1/(9a)^2 - 2 - 12a + 4/(3a)`
उत्तर
`(9a)^2 + 1/(9a)^2 - 2 - 12a + 4/(3a)`
= `(3a)^2 + 1/(3a)^2 - 2 xx 3a xx 1/(3a) - 4( 3a - 1/(3a))`
= `( 3a - 1/(3a))^2 - 4( 3a - 1/(3a))`
= `(3a - 1/(3a))[( 3a - 1/(3a)) - 4]`
= `( 3a - 1/(3a))( 3a - 4 - 1/(3a))`
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
12x, 36
Find the common factors of the terms.
2y, 22xy
Find the common factors of the terms.
16x3, −4x2, 32x
Find the common factors of the terms.
10pq, 20qr, 30rp
Factorise the following expression:
− 4a2 + 4ab − 4 ca
Factorise the following expression:
ax2y + bxy2 + cxyz
Factorise.
15xy − 6x + 5y − 2
Factorise.
z − 7 + 7xy − xyz
Factorize the following:
20a12b2 − 15a8b4
Factorize the following:
x4y2 − x2y4 − x4y4
Factorize the following:
9x2y + 3axy
Factorise : (a2 - a) (4a2 - 4a - 5) - 6
Find the value of : ( 67.8 )2 - ( 32.2 )2
Find the value of : `[(6.7)^2 - (3.3)^2]/[6.7 - 3.3]`
Factorise : a3 - a2 +a
Factorise : 17a6b8 - 34a4b6 + 51a2b4
Factorise : 12abc - 6a2b2c2 + 3a3b3c3
Factorise : 4x(3x - 2y) - 2y(3x - 2y)
Factorise: 36x2y2 - 30x3y3 + 48x3y2
factorise : xy2 + (x - 1) y - 1
factorise : (ax + by)2 + (bx - ay)2
factorise : m - 1 - (m-1)2 + am - a
Factorise xy2 - xz2, Hence, find the value of :
9 x 82 - 9 x 22
Factorise the following by taking out the common factors:
24m4n6 + 56m6n4 - 72m2n2
Factorise the following by taking out the common factors:
2a(p2 + q2) + 4b(p2 + q2)
Factorise the following by taking out the common factors:
36(x + y)3 - 54(x + y)2
Factorise the following by taking out the common factors:
p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)
Factorise:
`y^2 + (1)/(4y^2) + 1 - 6y - (3)/y`
Factorise:
5x2 - y2 - 4xy + 3x - 3y