Advertisements
Advertisements
प्रश्न
Factorise the following by taking out the common factors:
24m4n6 + 56m6n4 - 72m2n2
उत्तर
24m4n6 + 56m6n4 - 72m2n2
Here, the common factor is 8m2n2
Dividing throughout by 3a, we get
`(24"m"^4"n"^6)/(8"m"^2"n"^2) + (56"m"6"n")/(8"m"^2"n"^2) - (72"m"^2"n"^2)/(8"m"^2"n"^2)`
= 3m2n4 + 7m4n2 - 9
∴ 24m4n6 + 56m6n4 - 72m2n2
= 8m2n2(3m2n4 + 7m4n2 - 9).
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
2x, 3x2, 4
Factorise the following expression:
5x2y − 15xy2
Factorise.
15pq + 15 + 9q + 25p
Factorise.
z − 7 + 7xy − xyz
Factorize the following:
5x − 15x2
Factorize the following:
20x3 − 40x2 + 80x
Factorize the following:
9x2y + 3axy
Factorize the following:
16m − 4m2
Factories by taking out common factors :
2x(a - b) + 3y(5a - 5b) + 4z(2b - 2a)
Factorise : (a2 - a) (4a2 - 4a - 5) - 6
Factorise : 12(3x - 2y)2 - 3x + 2y - 1
Find the value of : `[(6.7)^2 - (3.3)^2]/[6.7 - 3.3]`
Find the value of : `[(18.5)^2 - (6.5)^2]/[18.5 + 6.5]`
Factorise : 15x + 5
Factorise : 3x2 + 6x3
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
factorise:
9a (x − 2y)4 − 12a (x − 2y)3
factorise : a2 - ab - 3a + 3b
factorise : xy2 + (x - 1) y - 1
factorise : ab(x2 + y2) - xy (a2 + b2)
factorise : m - 1 - (m-1)2 + am - a
Factorise xy2 - xz2, Hence, find the value of :
9 x 82 - 9 x 22
Factorise: a4 - 625
Factorise the following by taking out the common factors:
5a(x2 - y2) + 35b(x2 - y2)
Factorise the following by taking out the common factors:
36(x + y)3 - 54(x + y)2
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Factorise:
x4 + y4 - 6x2y2