Advertisements
Advertisements
प्रश्न
Factorise: a4 - 625
उत्तर
a4 - 625
= (a2)2 - (25)2
= (a2 + 25) (a2 - 25) ....[a2 - b2 = (a + b)(a - b)]
= (a2 + 25) {(a)2 - (5)2}
= (a2 + 25) (a + 5)(a - 5)
APPEARS IN
संबंधित प्रश्न
Factorise the following expression:
7x − 42
Factorise the following expression:
20 l2m + 30 alm
Factorise the following expression:
− 4a2 + 4ab − 4 ca
Factorise.
15xy − 6x + 5y − 2
Factorize the following:
20a12b2 − 15a8b4
Factorize the following:
28a2 + 14a2b2 − 21a4
Factorize the following:
x4y2 − x2y4 − x4y4
Factorise:
(2a - 3)2 - 2 (2a - 3) (a - 1) + (a - 1)2
Factorise : 12(3x - 2y)2 - 3x + 2y - 1
Factorise : 3 - 5x + 5y - 12(x - y)2
Factorise : `1/4 ( a + b )^2 - 9/16 ( 2a - b )^2`
Factorise : 4a2 - 8ab
Factorise : 15x4y3 - 20x3y
Factorise : 2b (2a + b) - 3c (2a + b)
Factorise: 36x2y2 - 30x3y3 + 48x3y2
factorise:
9a (x − 2y)4 − 12a (x − 2y)3
factorise : m - 1 - (m-1)2 + am - a
Factorise xy2 - xz2, Hence, find the value of :
9 x 82 - 9 x 22
Factorise the following by taking out the common factors:
36(x + y)3 - 54(x + y)2
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`