Advertisements
Advertisements
प्रश्न
Factorise : (a2 - a) (4a2 - 4a - 5) - 6
उत्तर
Let us assume, a2 - a = x
Then the given expression is,
(a2 - a) (4a2 - 4a - 5) - 6
= x( 4x - 5 ) - 6
= 4x2 - 5x - 6
= 4x2 - 8x + 3x - 6
= 4x( x - 2 ) + 3( x - 2 )
= ( 4x + 3 )( x - 2 )
= [ 4( a2 - a ) + 3 ]( a2 - a - 2 ) [ resubstitute the value of x ]
= [ 4a2 - 4a + 3 ]( a2 - a - 2 )
= [ 4a2 - 4a + 3 ]( a2 - 2a + a - 2 )
= [ 4a2 - 4a + 3 ][ a( a - 2 ) + 1( a - 2 )]
= [ 4a2 - 4a + 3 ]( a - 2 )( a + 1 )
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
14pq, 28p2q2
Find the common factors of the terms.
10pq, 20qr, 30rp
Find the common factors of the terms.
3x2y3, 10x3y2, 6x2y2z
Factorise the following expression:
6p − 12q
Factorise the following expression:
− 4a2 + 4ab − 4 ca
Factorise the following expression:
x2yz + xy2z + xyz2
Factorize the following:
5x − 15x2
Factorize the following:
2x3y2 − 4x2y3 + 8xy4
Factorize the following:
−4a2 + 4ab − 4ca
Factories by taking out common factors :
2x(a - b) + 3y(5a - 5b) + 4z(2b - 2a)
Factorise : `(9a)^2 + 1/(9a)^2 - 2 - 12a + 4/(3a)`
Factorise : `x^2 + [a^2 + 1]/a x + 1`
Factorise : 2(ab + cd) - a2 - b2 + c2 + d2
Factorise : a3 - a2 +a
Factorise : 2x3b2 - 4x5b4
Factorise : x2(a-b)-y2 (a-b)+z2(a-b)
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
factorise : 6x3 - 8x2
factorise:
9a (x − 2y)4 − 12a (x − 2y)3
factorise : x2y - xy2 + 5x - 5y
factorise : (ax + by)2 + (bx - ay)2
factorise : ab(x2 + y2) - xy (a2 + b2)
Factorise the following by taking out the common factors:
4x2y3 - 6x3y2 - 12xy2
Factorise the following by taking out the common factors:
12a3 + 15a2b - 21ab2
Factorise the following by taking out the common factors:
36(x + y)3 - 54(x + y)2
Factorise:
`y^2 + (1)/(4y^2) + 1 - 6y - (3)/y`
Factorise:
`"p"^2 + (1)/"p"^2 - 3`