Advertisements
Advertisements
प्रश्न
Factorise : `(9a)^2 + 1/(9a)^2 - 2 - 12a + 4/(3a)`
उत्तर
`(9a)^2 + 1/(9a)^2 - 2 - 12a + 4/(3a)`
= `(3a)^2 + 1/(3a)^2 - 2 xx 3a xx 1/(3a) - 4( 3a - 1/(3a))`
= `( 3a - 1/(3a))^2 - 4( 3a - 1/(3a))`
= `(3a - 1/(3a))[( 3a - 1/(3a)) - 4]`
= `( 3a - 1/(3a))( 3a - 4 - 1/(3a))`
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
12x, 36
Factorise the following expression:
6p − 12q
Factorise the following expression:
10a2 − 15b2 + 20c2
Factorise the following expression:
x2yz + xy2z + xyz2
Factorise.
x2 + xy + 8x + 8y
Factorise.
ax + bx − ay − by
Factorise.
15pq + 15 + 9q + 25p
Factorize the following:
2x3y2 − 4x2y3 + 8xy4
Factorize the following:
a4b − 3a2b2 − 6ab3
Factorize the following:
x4y2 − x2y4 − x4y4
Factorize the following:
x2yz + xy2z + xyz2
Factorise : `x^2 + [a^2 + 1]/a x + 1`
Factorise:
`x^4 + y^4 - 27x^2y^2`
Factorise : 4x4 + 9y4 + 11x2y2
Factorise : (a2 - 3a) (a2 - 3a + 7) + 10
Factorise : (a2 - a) (4a2 - 4a - 5) - 6
Factorise : x4 + y4 - 3x2y2
Factorise : 6x2y + 9xy2 + 4y3
Factorise: 36x2y2 - 30x3y3 + 48x3y2
factorise : x2y - xy2 + 5x - 5y
Factorise xy2 - xz2, Hence, find the value of :
40 x 5.52 - 40 x 4.52
Factorise: a2 - 0·36 b2
Factorise the following by taking out the common factors:
2x5y + 8x3y2 - 12x2y3
Factorise the following by taking out the common factors:
24m4n6 + 56m6n4 - 72m2n2
Factorise the following by taking out the common factors:
2a(p2 + q2) + 4b(p2 + q2)