Advertisements
Advertisements
प्रश्न
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
उत्तर
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
= `(x)^2 + 1/(2x)^2 + 2 xx x xx 1/(2x) - 7( x + 1/(2x))`
= `( x + 1/(2x))^2 - 7( x + 1/(2x))`
= `( x + 1/(2x))( x + 1/(2x) - 7)`
= `( x + 1/(2x))( x - 7 + 1/(2x))`
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
12x, 36
Find the common factors of the terms.
6 abc, 24ab2, 12a2b
Find the common factors of the terms.
3x2y3, 10x3y2, 6x2y2z
Factorise the following expression:
7x − 42
Factorise the following expression:
20 l2m + 30 alm
Factorise the following expression:
x2yz + xy2z + xyz2
Factorise.
ax + bx − ay − by
Factorise.
15pq + 15 + 9q + 25p
Factorize the following:
10m3n2 + 15m4n − 20m2n3
Factorize the following:
a4b − 3a2b2 − 6ab3
Factorize the following:
−4a2 + 4ab − 4ca
Factorise:
`x^4 + y^4 - 27x^2y^2`
Factorise : `x^2 + 1/x^2 - 3`
Factorise : a - b - 4a2 + 4b2
Factorise : (a2 - a) (4a2 - 4a - 5) - 6
Factorise : 9x 2 + 3x - 8y - 64y2
Factorise : 2(ab + cd) - a2 - b2 + c2 + d2
Find the value of : ( 987 )2 - (13)2
Factorise : 15x + 5
Factorise : 17a6b8 - 34a4b6 + 51a2b4
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
factorise : 35a3b2c + 42ab2c2
factorise : m - 1 - (m-1)2 + am - a
Factorise the following by taking out the common factors:
4x2y3 - 6x3y2 - 12xy2
Factorise the following by taking out the common factors:
2x5y + 8x3y2 - 12x2y3
Factorise the following by taking out the common factors:
(mx + ny)2 + (nx - my)2
Factorise:
`"p"^2 + (1)/"p"^2 - 3`